|
|
|
@ -0,0 +1,375 @@ |
|
|
|
// Code in this file is derived from
|
|
|
|
// https://github.com/flutter/flutter/blob/master/packages/flutter/lib/src/gestures/velocity_tracker.dart
|
|
|
|
|
|
|
|
using System; |
|
|
|
using System.Diagnostics; |
|
|
|
using Avalonia.Utilities; |
|
|
|
|
|
|
|
namespace Avalonia.Input.GestureRecognizers |
|
|
|
{ |
|
|
|
// Possible enhancement: add Flutter's 'IOSScrollViewFlingVelocityTracker' and 'MacOSScrollViewFlingVelocityTracker'?
|
|
|
|
|
|
|
|
internal readonly record struct Velocity(Vector PixelsPerSecond) |
|
|
|
{ |
|
|
|
public Velocity ClampMagnitude(double minValue, double maxValue) |
|
|
|
{ |
|
|
|
Debug.Assert(minValue >= 0.0); |
|
|
|
Debug.Assert(maxValue >= 0.0 && maxValue >= minValue); |
|
|
|
double valueSquared = PixelsPerSecond.SquaredLength; |
|
|
|
if (valueSquared > maxValue * maxValue) |
|
|
|
{ |
|
|
|
double length = PixelsPerSecond.Length; |
|
|
|
return new Velocity(length != 0.0 ? (PixelsPerSecond / length) * maxValue : Vector.Zero); |
|
|
|
// preventing double.NaN in Vector PixelsPerSecond is important -- if a NaN eventually gets into a
|
|
|
|
// ScrollGestureEventArgs it results in runtime errors.
|
|
|
|
} |
|
|
|
if (valueSquared < minValue * minValue) |
|
|
|
{ |
|
|
|
double length = PixelsPerSecond.Length; |
|
|
|
return new Velocity(length != 0.0 ? (PixelsPerSecond / length) * minValue : Vector.Zero); |
|
|
|
} |
|
|
|
return this; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/// A two dimensional velocity estimate.
|
|
|
|
///
|
|
|
|
/// VelocityEstimates are computed by [VelocityTracker.getVelocityEstimate]. An
|
|
|
|
/// estimate's [confidence] measures how well the velocity tracker's position
|
|
|
|
/// data fit a straight line, [duration] is the time that elapsed between the
|
|
|
|
/// first and last position sample used to compute the velocity, and [offset]
|
|
|
|
/// is similarly the difference between the first and last positions.
|
|
|
|
///
|
|
|
|
/// See also:
|
|
|
|
///
|
|
|
|
/// * [VelocityTracker], which computes [VelocityEstimate]s.
|
|
|
|
/// * [Velocity], which encapsulates (just) a velocity vector and provides some
|
|
|
|
/// useful velocity operations.
|
|
|
|
internal record VelocityEstimate(Vector PixelsPerSecond, double Confidence, TimeSpan Duration, Vector Offset); |
|
|
|
|
|
|
|
internal record struct PointAtTime(bool Valid, Vector Point, TimeSpan Time); |
|
|
|
|
|
|
|
/// Computes a pointer's velocity based on data from [PointerMoveEvent]s.
|
|
|
|
///
|
|
|
|
/// The input data is provided by calling [addPosition]. Adding data is cheap.
|
|
|
|
///
|
|
|
|
/// To obtain a velocity, call [getVelocity] or [getVelocityEstimate]. This will
|
|
|
|
/// compute the velocity based on the data added so far. Only call these when
|
|
|
|
/// you need to use the velocity, as they are comparatively expensive.
|
|
|
|
///
|
|
|
|
/// The quality of the velocity estimation will be better if more data points
|
|
|
|
/// have been received.
|
|
|
|
internal class VelocityTracker |
|
|
|
{ |
|
|
|
private const int AssumePointerMoveStoppedMilliseconds = 40; |
|
|
|
private const int HistorySize = 20; |
|
|
|
private const int HorizonMilliseconds = 100; |
|
|
|
private const int MinSampleSize = 3; |
|
|
|
private const double MinFlingVelocity = 50.0; // Logical pixels / second
|
|
|
|
private const double MaxFlingVelocity = 8000.0; |
|
|
|
|
|
|
|
private readonly PointAtTime[] _samples = new PointAtTime[HistorySize]; |
|
|
|
private int _index = 0; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Adds a position as the given time to the tracker.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="time"></param>
|
|
|
|
/// <param name="position"></param>
|
|
|
|
public void AddPosition(TimeSpan time, Vector position) |
|
|
|
{ |
|
|
|
_index++; |
|
|
|
if (_index == HistorySize) |
|
|
|
{ |
|
|
|
_index = 0; |
|
|
|
} |
|
|
|
_samples[_index] = new PointAtTime(true, position, time); |
|
|
|
} |
|
|
|
|
|
|
|
/// Returns an estimate of the velocity of the object being tracked by the
|
|
|
|
/// tracker given the current information available to the tracker.
|
|
|
|
///
|
|
|
|
/// Information is added using [addPosition].
|
|
|
|
///
|
|
|
|
/// Returns null if there is no data on which to base an estimate.
|
|
|
|
protected virtual VelocityEstimate? GetVelocityEstimate() |
|
|
|
{ |
|
|
|
Span<double> x = stackalloc double[HistorySize]; |
|
|
|
Span<double> y = stackalloc double[HistorySize]; |
|
|
|
Span<double> w = stackalloc double[HistorySize]; |
|
|
|
Span<double> time = stackalloc double[HistorySize]; |
|
|
|
int sampleCount = 0; |
|
|
|
int index = _index; |
|
|
|
|
|
|
|
var newestSample = _samples[index]; |
|
|
|
if (!newestSample.Valid) |
|
|
|
{ |
|
|
|
return null; |
|
|
|
} |
|
|
|
|
|
|
|
var previousSample = newestSample; |
|
|
|
var oldestSample = newestSample; |
|
|
|
|
|
|
|
// Starting with the most recent PointAtTime sample, iterate backwards while
|
|
|
|
// the samples represent continuous motion.
|
|
|
|
do |
|
|
|
{ |
|
|
|
var sample = _samples[index]; |
|
|
|
if (!sample.Valid) |
|
|
|
{ |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
double age = (newestSample.Time - sample.Time).TotalMilliseconds; |
|
|
|
double delta = Math.Abs((sample.Time - previousSample.Time).TotalMilliseconds); |
|
|
|
previousSample = sample; |
|
|
|
if (age > HorizonMilliseconds || delta > AssumePointerMoveStoppedMilliseconds) |
|
|
|
{ |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
oldestSample = sample; |
|
|
|
var position = sample.Point; |
|
|
|
x[sampleCount] = position.X; |
|
|
|
y[sampleCount] = position.Y; |
|
|
|
w[sampleCount] = 1.0; |
|
|
|
time[sampleCount] = -age; |
|
|
|
index = (index == 0 ? HistorySize : index) - 1; |
|
|
|
|
|
|
|
sampleCount++; |
|
|
|
} while (sampleCount < HistorySize); |
|
|
|
|
|
|
|
if (sampleCount >= MinSampleSize) |
|
|
|
{ |
|
|
|
var xFit = LeastSquaresSolver.Solve(2, time.Slice(0, sampleCount), x.Slice(0, sampleCount), w.Slice(0, sampleCount)); |
|
|
|
if (xFit != null) |
|
|
|
{ |
|
|
|
var yFit = LeastSquaresSolver.Solve(2, time.Slice(0, sampleCount), y.Slice(0, sampleCount), w.Slice(0, sampleCount)); |
|
|
|
if (yFit != null) |
|
|
|
{ |
|
|
|
return new VelocityEstimate( // convert from pixels/ms to pixels/s
|
|
|
|
PixelsPerSecond: new Vector(xFit.Coefficients[1] * 1000, yFit.Coefficients[1] * 1000), |
|
|
|
Confidence: xFit.Confidence * yFit.Confidence, |
|
|
|
Duration: newestSample.Time - oldestSample.Time, |
|
|
|
Offset: newestSample.Point - oldestSample.Point |
|
|
|
); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// We're unable to make a velocity estimate but we did have at least one
|
|
|
|
// valid pointer position.
|
|
|
|
return new VelocityEstimate( |
|
|
|
PixelsPerSecond: Vector.Zero, |
|
|
|
Confidence: 1.0, |
|
|
|
Duration: newestSample.Time - oldestSample.Time, |
|
|
|
Offset: newestSample.Point - oldestSample.Point |
|
|
|
); |
|
|
|
} |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Computes the velocity of the pointer at the time of the last
|
|
|
|
/// provided data point.
|
|
|
|
///
|
|
|
|
/// This can be expensive. Only call this when you need the velocity.
|
|
|
|
///
|
|
|
|
/// Returns [Velocity.zero] if there is no data from which to compute an
|
|
|
|
/// estimate or if the estimated velocity is zero.///
|
|
|
|
/// </summary>
|
|
|
|
/// <returns></returns>
|
|
|
|
internal Velocity GetVelocity() |
|
|
|
{ |
|
|
|
var estimate = GetVelocityEstimate(); |
|
|
|
if (estimate == null || estimate.PixelsPerSecond.IsDefault) |
|
|
|
{ |
|
|
|
return new Velocity(Vector.Zero); |
|
|
|
} |
|
|
|
return new Velocity(estimate.PixelsPerSecond); |
|
|
|
} |
|
|
|
|
|
|
|
internal virtual Velocity GetFlingVelocity() |
|
|
|
{ |
|
|
|
return GetVelocity().ClampMagnitude(MinFlingVelocity, MaxFlingVelocity); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/// An nth degree polynomial fit to a dataset.
|
|
|
|
internal class PolynomialFit |
|
|
|
{ |
|
|
|
/// Creates a polynomial fit of the given degree.
|
|
|
|
///
|
|
|
|
/// There are n + 1 coefficients in a fit of degree n.
|
|
|
|
internal PolynomialFit(int degree) |
|
|
|
{ |
|
|
|
Coefficients = new double[degree + 1]; |
|
|
|
} |
|
|
|
|
|
|
|
/// The polynomial coefficients of the fit.
|
|
|
|
public double[] Coefficients { get; } |
|
|
|
|
|
|
|
/// An indicator of the quality of the fit.
|
|
|
|
///
|
|
|
|
/// Larger values indicate greater quality.
|
|
|
|
public double Confidence { get; set; } |
|
|
|
} |
|
|
|
|
|
|
|
internal class LeastSquaresSolver |
|
|
|
{ |
|
|
|
private const double PrecisionErrorTolerance = 1e-10; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Fits a polynomial of the given degree to the data points.
|
|
|
|
/// When there is not enough data to fit a curve null is returned.
|
|
|
|
/// </summary>
|
|
|
|
public static PolynomialFit? Solve(int degree, ReadOnlySpan<double> x, ReadOnlySpan<double> y, ReadOnlySpan<double> w) |
|
|
|
{ |
|
|
|
if (degree > x.Length) |
|
|
|
{ |
|
|
|
// Not enough data to fit a curve.
|
|
|
|
return null; |
|
|
|
} |
|
|
|
|
|
|
|
PolynomialFit result = new PolynomialFit(degree); |
|
|
|
|
|
|
|
// Shorthands for the purpose of notation equivalence to original C++ code.
|
|
|
|
int m = x.Length; |
|
|
|
int n = degree + 1; |
|
|
|
|
|
|
|
// Expand the X vector to a matrix A, pre-multiplied by the weights.
|
|
|
|
_Matrix a = new _Matrix(m, stackalloc double[n * m]); |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
a[0, h] = w[h]; |
|
|
|
for (int i = 1; i < n; i += 1) |
|
|
|
{ |
|
|
|
a[i, h] = a[i - 1, h] * x[h]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
|
|
|
|
|
|
|
|
// Orthonormal basis, column-major order Vector.
|
|
|
|
_Matrix q = new _Matrix(m, stackalloc double[n * m]); |
|
|
|
// Upper triangular matrix, row-major order.
|
|
|
|
_Matrix r = new _Matrix(n, stackalloc double[n * n]); |
|
|
|
for (int j = 0; j < n; j += 1) |
|
|
|
{ |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
q[j, h] = a[j, h]; |
|
|
|
} |
|
|
|
for (int i = 0; i < j; i += 1) |
|
|
|
{ |
|
|
|
double dot = Multiply(q.GetRow(j), q.GetRow(i)); |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
q[j, h] = q[j, h] - dot * q[i, h]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
double norm = Norm(q.GetRow(j)); |
|
|
|
if (norm < PrecisionErrorTolerance) |
|
|
|
{ |
|
|
|
// Vectors are linearly dependent or zero so no solution.
|
|
|
|
return null; |
|
|
|
} |
|
|
|
|
|
|
|
double inverseNorm = 1.0 / norm; |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
q[j, h] = q[j, h] * inverseNorm; |
|
|
|
} |
|
|
|
for (int i = 0; i < n; i += 1) |
|
|
|
{ |
|
|
|
r[j, i] = i < j ? 0.0 : Multiply(q.GetRow(j), a.GetRow(i)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
|
|
|
|
// We just work from bottom-right to top-left calculating B's coefficients.
|
|
|
|
// "m" isn't expected to be bigger than HistorySize=20, so allocation on stack is safe.
|
|
|
|
Span<double> wy = stackalloc double[m]; |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
wy[h] = y[h] * w[h]; |
|
|
|
} |
|
|
|
for (int i = n - 1; i >= 0; i -= 1) |
|
|
|
{ |
|
|
|
result.Coefficients[i] = Multiply(q.GetRow(i), wy); |
|
|
|
for (int j = n - 1; j > i; j -= 1) |
|
|
|
{ |
|
|
|
result.Coefficients[i] -= r[i, j] * result.Coefficients[j]; |
|
|
|
} |
|
|
|
result.Coefficients[i] /= r[i, i]; |
|
|
|
} |
|
|
|
|
|
|
|
// Calculate the coefficient of determination (confidence) as:
|
|
|
|
// 1 - (sumSquaredError / sumSquaredTotal)
|
|
|
|
// ...where sumSquaredError is the residual sum of squares (variance of the
|
|
|
|
// error), and sumSquaredTotal is the total sum of squares (variance of the
|
|
|
|
// data) where each has been weighted.
|
|
|
|
double yMean = 0.0; |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
yMean += y[h]; |
|
|
|
} |
|
|
|
yMean /= m; |
|
|
|
|
|
|
|
double sumSquaredError = 0.0; |
|
|
|
double sumSquaredTotal = 0.0; |
|
|
|
for (int h = 0; h < m; h += 1) |
|
|
|
{ |
|
|
|
double term = 1.0; |
|
|
|
double err = y[h] - result.Coefficients[0]; |
|
|
|
for (int i = 1; i < n; i += 1) |
|
|
|
{ |
|
|
|
term *= x[h]; |
|
|
|
err -= term * result.Coefficients[i]; |
|
|
|
} |
|
|
|
sumSquaredError += w[h] * w[h] * err * err; |
|
|
|
double v = y[h] - yMean; |
|
|
|
sumSquaredTotal += w[h] * w[h] * v * v; |
|
|
|
} |
|
|
|
|
|
|
|
result.Confidence = sumSquaredTotal <= PrecisionErrorTolerance ? 1.0 : |
|
|
|
1.0 - (sumSquaredError / sumSquaredTotal); |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
private static double Multiply(Span<double> v1, Span<double> v2) |
|
|
|
{ |
|
|
|
double result = 0.0; |
|
|
|
for (int i = 0; i < v1.Length; i += 1) |
|
|
|
{ |
|
|
|
result += v1[i] * v2[i]; |
|
|
|
} |
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
private static double Norm(Span<double> v) |
|
|
|
{ |
|
|
|
return Math.Sqrt(Multiply(v, v)); |
|
|
|
} |
|
|
|
|
|
|
|
private readonly ref struct _Matrix |
|
|
|
{ |
|
|
|
private readonly int _columns; |
|
|
|
private readonly Span<double> _elements; |
|
|
|
|
|
|
|
internal _Matrix(int cols, Span<double> elements) |
|
|
|
{ |
|
|
|
_columns = cols; |
|
|
|
_elements = elements; |
|
|
|
} |
|
|
|
|
|
|
|
public double this[int row, int col] |
|
|
|
{ |
|
|
|
get => _elements[row * _columns + col]; |
|
|
|
set => _elements[row * _columns + col] = value; |
|
|
|
} |
|
|
|
|
|
|
|
public Span<double> GetRow(int row) => _elements.Slice(row * _columns, _columns); |
|
|
|
} |
|
|
|
} |
|
|
|
} |