Browse Source

Merge branch 'master' into dependabot/npm_and_yarn/tests/Avalonia.DesignerSupport.Tests/Remote/HtmlTransport/webapp/json5-2.2.2

pull/9820/head
Max Katz 3 years ago
committed by GitHub
parent
commit
a6fec2bc10
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 31
      NOTICE.md
  2. 43
      src/Avalonia.Base/Input/GestureRecognizers/ScrollGestureRecognizer.cs
  3. 375
      src/Avalonia.Base/Input/GestureRecognizers/VelocityTracker.cs

31
NOTICE.md

@ -303,3 +303,34 @@ https://github.com/chromium/chromium
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Flutter
https://github.com/flutter/flutter
//Copyright 2014 The Flutter Authors. All rights reserved.
//Redistribution and use in source and binary forms, with or without modification,
//are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
//ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
//WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
//DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
//ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
//(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS;
//OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
//(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
//SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

43
src/Avalonia.Base/Input/GestureRecognizers/ScrollGestureRecognizer.cs

@ -17,7 +17,9 @@ namespace Avalonia.Input.GestureRecognizers
private bool _canVerticallyScroll;
private int _gestureId;
private int _scrollStartDistance = 30;
private Point _pointerPressedPoint;
private VelocityTracker? _velocityTracker;
// Movement per second
private Vector _inertia;
private ulong? _lastMoveTimestamp;
@ -91,7 +93,7 @@ namespace Avalonia.Input.GestureRecognizers
EndGesture();
_tracking = e.Pointer;
_gestureId = ScrollGestureEventArgs.GetNextFreeId();
_trackedRootPoint = e.GetPosition((Visual?)_target);
_trackedRootPoint = _pointerPressedPoint = e.GetPosition((Visual?)_target);
}
}
@ -111,6 +113,13 @@ namespace Avalonia.Input.GestureRecognizers
_scrolling = true;
if (_scrolling)
{
_velocityTracker = new VelocityTracker();
// Correct _trackedRootPoint with ScrollStartDistance, so scrolling does not start with a skip of ScrollStartDistance
_trackedRootPoint = new Point(
_trackedRootPoint.X - (_trackedRootPoint.X >= rootPoint.X ? _scrollStartDistance : -_scrollStartDistance),
_trackedRootPoint.Y - (_trackedRootPoint.Y >= rootPoint.Y ? _scrollStartDistance : -_scrollStartDistance));
_actions!.Capture(e.Pointer, this);
}
}
@ -118,14 +127,11 @@ namespace Avalonia.Input.GestureRecognizers
if (_scrolling)
{
var vector = _trackedRootPoint - rootPoint;
var elapsed = _lastMoveTimestamp.HasValue && _lastMoveTimestamp < e.Timestamp ?
TimeSpan.FromMilliseconds(e.Timestamp - _lastMoveTimestamp.Value) :
TimeSpan.Zero;
_velocityTracker?.AddPosition(TimeSpan.FromMilliseconds(e.Timestamp), _pointerPressedPoint - rootPoint);
_lastMoveTimestamp = e.Timestamp;
_trackedRootPoint = rootPoint;
if (elapsed.TotalSeconds > 0)
_inertia = vector / elapsed.TotalSeconds;
_target!.RaiseEvent(new ScrollGestureEventArgs(_gestureId, vector));
e.Handled = true;
}
@ -150,12 +156,14 @@ namespace Avalonia.Input.GestureRecognizers
}
}
public void PointerReleased(PointerReleasedEventArgs e)
{
if (e.Pointer == _tracking && _scrolling)
{
_inertia = _velocityTracker?.GetFlingVelocity().PixelsPerSecond ?? Vector.Zero;
e.Handled = true;
if (_inertia == default
|| e.Timestamp == 0
@ -183,9 +191,18 @@ namespace Avalonia.Input.GestureRecognizers
var distance = speed * elapsedSinceLastTick.TotalSeconds;
_target!.RaiseEvent(new ScrollGestureEventArgs(_gestureId, distance));
if (Math.Abs(speed.X) < InertialScrollSpeedEnd || Math.Abs(speed.Y) <= InertialScrollSpeedEnd)
// EndGesture using InertialScrollSpeedEnd only in the direction of scrolling
if (CanVerticallyScroll && CanHorizontallyScroll && Math.Abs(speed.X) < InertialScrollSpeedEnd && Math.Abs(speed.Y) <= InertialScrollSpeedEnd)
{
EndGesture();
return false;
}
else if (CanVerticallyScroll && Math.Abs(speed.Y) <= InertialScrollSpeedEnd)
{
EndGesture();
return false;
}
else if (CanHorizontallyScroll && Math.Abs(speed.X) < InertialScrollSpeedEnd)
{
EndGesture();
return false;

375
src/Avalonia.Base/Input/GestureRecognizers/VelocityTracker.cs

@ -0,0 +1,375 @@
// Code in this file is derived from
// https://github.com/flutter/flutter/blob/master/packages/flutter/lib/src/gestures/velocity_tracker.dart
using System;
using System.Diagnostics;
using Avalonia.Utilities;
namespace Avalonia.Input.GestureRecognizers
{
// Possible enhancement: add Flutter's 'IOSScrollViewFlingVelocityTracker' and 'MacOSScrollViewFlingVelocityTracker'?
internal readonly record struct Velocity(Vector PixelsPerSecond)
{
public Velocity ClampMagnitude(double minValue, double maxValue)
{
Debug.Assert(minValue >= 0.0);
Debug.Assert(maxValue >= 0.0 && maxValue >= minValue);
double valueSquared = PixelsPerSecond.SquaredLength;
if (valueSquared > maxValue * maxValue)
{
double length = PixelsPerSecond.Length;
return new Velocity(length != 0.0 ? (PixelsPerSecond / length) * maxValue : Vector.Zero);
// preventing double.NaN in Vector PixelsPerSecond is important -- if a NaN eventually gets into a
// ScrollGestureEventArgs it results in runtime errors.
}
if (valueSquared < minValue * minValue)
{
double length = PixelsPerSecond.Length;
return new Velocity(length != 0.0 ? (PixelsPerSecond / length) * minValue : Vector.Zero);
}
return this;
}
}
/// A two dimensional velocity estimate.
///
/// VelocityEstimates are computed by [VelocityTracker.getVelocityEstimate]. An
/// estimate's [confidence] measures how well the velocity tracker's position
/// data fit a straight line, [duration] is the time that elapsed between the
/// first and last position sample used to compute the velocity, and [offset]
/// is similarly the difference between the first and last positions.
///
/// See also:
///
/// * [VelocityTracker], which computes [VelocityEstimate]s.
/// * [Velocity], which encapsulates (just) a velocity vector and provides some
/// useful velocity operations.
internal record VelocityEstimate(Vector PixelsPerSecond, double Confidence, TimeSpan Duration, Vector Offset);
internal record struct PointAtTime(bool Valid, Vector Point, TimeSpan Time);
/// Computes a pointer's velocity based on data from [PointerMoveEvent]s.
///
/// The input data is provided by calling [addPosition]. Adding data is cheap.
///
/// To obtain a velocity, call [getVelocity] or [getVelocityEstimate]. This will
/// compute the velocity based on the data added so far. Only call these when
/// you need to use the velocity, as they are comparatively expensive.
///
/// The quality of the velocity estimation will be better if more data points
/// have been received.
internal class VelocityTracker
{
private const int AssumePointerMoveStoppedMilliseconds = 40;
private const int HistorySize = 20;
private const int HorizonMilliseconds = 100;
private const int MinSampleSize = 3;
private const double MinFlingVelocity = 50.0; // Logical pixels / second
private const double MaxFlingVelocity = 8000.0;
private readonly PointAtTime[] _samples = new PointAtTime[HistorySize];
private int _index = 0;
/// <summary>
/// Adds a position as the given time to the tracker.
/// </summary>
/// <param name="time"></param>
/// <param name="position"></param>
public void AddPosition(TimeSpan time, Vector position)
{
_index++;
if (_index == HistorySize)
{
_index = 0;
}
_samples[_index] = new PointAtTime(true, position, time);
}
/// Returns an estimate of the velocity of the object being tracked by the
/// tracker given the current information available to the tracker.
///
/// Information is added using [addPosition].
///
/// Returns null if there is no data on which to base an estimate.
protected virtual VelocityEstimate? GetVelocityEstimate()
{
Span<double> x = stackalloc double[HistorySize];
Span<double> y = stackalloc double[HistorySize];
Span<double> w = stackalloc double[HistorySize];
Span<double> time = stackalloc double[HistorySize];
int sampleCount = 0;
int index = _index;
var newestSample = _samples[index];
if (!newestSample.Valid)
{
return null;
}
var previousSample = newestSample;
var oldestSample = newestSample;
// Starting with the most recent PointAtTime sample, iterate backwards while
// the samples represent continuous motion.
do
{
var sample = _samples[index];
if (!sample.Valid)
{
break;
}
double age = (newestSample.Time - sample.Time).TotalMilliseconds;
double delta = Math.Abs((sample.Time - previousSample.Time).TotalMilliseconds);
previousSample = sample;
if (age > HorizonMilliseconds || delta > AssumePointerMoveStoppedMilliseconds)
{
break;
}
oldestSample = sample;
var position = sample.Point;
x[sampleCount] = position.X;
y[sampleCount] = position.Y;
w[sampleCount] = 1.0;
time[sampleCount] = -age;
index = (index == 0 ? HistorySize : index) - 1;
sampleCount++;
} while (sampleCount < HistorySize);
if (sampleCount >= MinSampleSize)
{
var xFit = LeastSquaresSolver.Solve(2, time.Slice(0, sampleCount), x.Slice(0, sampleCount), w.Slice(0, sampleCount));
if (xFit != null)
{
var yFit = LeastSquaresSolver.Solve(2, time.Slice(0, sampleCount), y.Slice(0, sampleCount), w.Slice(0, sampleCount));
if (yFit != null)
{
return new VelocityEstimate( // convert from pixels/ms to pixels/s
PixelsPerSecond: new Vector(xFit.Coefficients[1] * 1000, yFit.Coefficients[1] * 1000),
Confidence: xFit.Confidence * yFit.Confidence,
Duration: newestSample.Time - oldestSample.Time,
Offset: newestSample.Point - oldestSample.Point
);
}
}
}
// We're unable to make a velocity estimate but we did have at least one
// valid pointer position.
return new VelocityEstimate(
PixelsPerSecond: Vector.Zero,
Confidence: 1.0,
Duration: newestSample.Time - oldestSample.Time,
Offset: newestSample.Point - oldestSample.Point
);
}
/// <summary>
/// Computes the velocity of the pointer at the time of the last
/// provided data point.
///
/// This can be expensive. Only call this when you need the velocity.
///
/// Returns [Velocity.zero] if there is no data from which to compute an
/// estimate or if the estimated velocity is zero.///
/// </summary>
/// <returns></returns>
internal Velocity GetVelocity()
{
var estimate = GetVelocityEstimate();
if (estimate == null || estimate.PixelsPerSecond.IsDefault)
{
return new Velocity(Vector.Zero);
}
return new Velocity(estimate.PixelsPerSecond);
}
internal virtual Velocity GetFlingVelocity()
{
return GetVelocity().ClampMagnitude(MinFlingVelocity, MaxFlingVelocity);
}
}
/// An nth degree polynomial fit to a dataset.
internal class PolynomialFit
{
/// Creates a polynomial fit of the given degree.
///
/// There are n + 1 coefficients in a fit of degree n.
internal PolynomialFit(int degree)
{
Coefficients = new double[degree + 1];
}
/// The polynomial coefficients of the fit.
public double[] Coefficients { get; }
/// An indicator of the quality of the fit.
///
/// Larger values indicate greater quality.
public double Confidence { get; set; }
}
internal class LeastSquaresSolver
{
private const double PrecisionErrorTolerance = 1e-10;
/// <summary>
/// Fits a polynomial of the given degree to the data points.
/// When there is not enough data to fit a curve null is returned.
/// </summary>
public static PolynomialFit? Solve(int degree, ReadOnlySpan<double> x, ReadOnlySpan<double> y, ReadOnlySpan<double> w)
{
if (degree > x.Length)
{
// Not enough data to fit a curve.
return null;
}
PolynomialFit result = new PolynomialFit(degree);
// Shorthands for the purpose of notation equivalence to original C++ code.
int m = x.Length;
int n = degree + 1;
// Expand the X vector to a matrix A, pre-multiplied by the weights.
_Matrix a = new _Matrix(m, stackalloc double[n * m]);
for (int h = 0; h < m; h += 1)
{
a[0, h] = w[h];
for (int i = 1; i < n; i += 1)
{
a[i, h] = a[i - 1, h] * x[h];
}
}
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
// Orthonormal basis, column-major order Vector.
_Matrix q = new _Matrix(m, stackalloc double[n * m]);
// Upper triangular matrix, row-major order.
_Matrix r = new _Matrix(n, stackalloc double[n * n]);
for (int j = 0; j < n; j += 1)
{
for (int h = 0; h < m; h += 1)
{
q[j, h] = a[j, h];
}
for (int i = 0; i < j; i += 1)
{
double dot = Multiply(q.GetRow(j), q.GetRow(i));
for (int h = 0; h < m; h += 1)
{
q[j, h] = q[j, h] - dot * q[i, h];
}
}
double norm = Norm(q.GetRow(j));
if (norm < PrecisionErrorTolerance)
{
// Vectors are linearly dependent or zero so no solution.
return null;
}
double inverseNorm = 1.0 / norm;
for (int h = 0; h < m; h += 1)
{
q[j, h] = q[j, h] * inverseNorm;
}
for (int i = 0; i < n; i += 1)
{
r[j, i] = i < j ? 0.0 : Multiply(q.GetRow(j), a.GetRow(i));
}
}
// Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
// We just work from bottom-right to top-left calculating B's coefficients.
// "m" isn't expected to be bigger than HistorySize=20, so allocation on stack is safe.
Span<double> wy = stackalloc double[m];
for (int h = 0; h < m; h += 1)
{
wy[h] = y[h] * w[h];
}
for (int i = n - 1; i >= 0; i -= 1)
{
result.Coefficients[i] = Multiply(q.GetRow(i), wy);
for (int j = n - 1; j > i; j -= 1)
{
result.Coefficients[i] -= r[i, j] * result.Coefficients[j];
}
result.Coefficients[i] /= r[i, i];
}
// Calculate the coefficient of determination (confidence) as:
// 1 - (sumSquaredError / sumSquaredTotal)
// ...where sumSquaredError is the residual sum of squares (variance of the
// error), and sumSquaredTotal is the total sum of squares (variance of the
// data) where each has been weighted.
double yMean = 0.0;
for (int h = 0; h < m; h += 1)
{
yMean += y[h];
}
yMean /= m;
double sumSquaredError = 0.0;
double sumSquaredTotal = 0.0;
for (int h = 0; h < m; h += 1)
{
double term = 1.0;
double err = y[h] - result.Coefficients[0];
for (int i = 1; i < n; i += 1)
{
term *= x[h];
err -= term * result.Coefficients[i];
}
sumSquaredError += w[h] * w[h] * err * err;
double v = y[h] - yMean;
sumSquaredTotal += w[h] * w[h] * v * v;
}
result.Confidence = sumSquaredTotal <= PrecisionErrorTolerance ? 1.0 :
1.0 - (sumSquaredError / sumSquaredTotal);
return result;
}
private static double Multiply(Span<double> v1, Span<double> v2)
{
double result = 0.0;
for (int i = 0; i < v1.Length; i += 1)
{
result += v1[i] * v2[i];
}
return result;
}
private static double Norm(Span<double> v)
{
return Math.Sqrt(Multiply(v, v));
}
private readonly ref struct _Matrix
{
private readonly int _columns;
private readonly Span<double> _elements;
internal _Matrix(int cols, Span<double> elements)
{
_columns = cols;
_elements = elements;
}
public double this[int row, int col]
{
get => _elements[row * _columns + col];
set => _elements[row * _columns + col] = value;
}
public Span<double> GetRow(int row) => _elements.Slice(row * _columns, _columns);
}
}
}
Loading…
Cancel
Save