A cross-platform UI framework for .NET
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

471 lines
14 KiB

// Copyright (c) 2009-2014 Math.NET Taken from http://github.com/mathnet/mathnet-numerics and modified for Wasabi Wallet
using System;
namespace MathNet
{
/// <summary>
/// Cubic Spline Interpolation.
/// </summary>
/// <remarks>Supports both differentiation and integration.</remarks>
public class CubicSpline
{
private readonly double[] _x;
private readonly double[] _c0;
private readonly double[] _c1;
private readonly double[] _c2;
private readonly double[] _c3;
private readonly Lazy<double[]> _indefiniteIntegral;
/// <param name="x">Sample points (N+1), sorted ascending</param>
/// <param name="c0">Zero order spline coefficients (N)</param>
/// <param name="c1">First order spline coefficients (N)</param>
/// <param name="c2">Second order spline coefficients (N)</param>
/// <param name="c3">Third order spline coefficients (N)</param>
public CubicSpline(double[] x, double[] c0, double[] c1, double[] c2, double[] c3)
{
if (x.Length != c0.Length + 1 || x.Length != c1.Length + 1 || x.Length != c2.Length + 1 || x.Length != c3.Length + 1)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 2)
{
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
}
_x = x;
_c0 = c0;
_c1 = c1;
_c2 = c2;
_c3 = c3;
_indefiniteIntegral = new Lazy<double[]>(ComputeIndefiniteIntegral);
}
/// <summary>
/// Create a Hermite cubic spline interpolation from a set of (x,y) value pairs and their slope (first derivative), sorted ascendingly by x.
/// </summary>
public static CubicSpline InterpolateHermiteSorted(double[] x, double[] y, double[] firstDerivatives)
{
if (x.Length != y.Length || x.Length != firstDerivatives.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 2)
{
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
}
var c0 = new double[x.Length - 1];
var c1 = new double[x.Length - 1];
var c2 = new double[x.Length - 1];
var c3 = new double[x.Length - 1];
for (int i = 0; i < c1.Length; i++)
{
double w = x[i + 1] - x[i];
double w2 = w * w;
c0[i] = y[i];
c1[i] = firstDerivatives[i];
c2[i] = (3 * (y[i + 1] - y[i]) / w - 2 * firstDerivatives[i] - firstDerivatives[i + 1]) / w;
c3[i] = (2 * (y[i] - y[i + 1]) / w + firstDerivatives[i] + firstDerivatives[i + 1]) / w2;
}
return new CubicSpline(x, c0, c1, c2, c3);
}
/// <summary>
/// Create an Akima cubic spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x.
/// Akima splines are robust to outliers.
/// </summary>
public static CubicSpline InterpolateAkimaSorted(double[] x, double[] y)
{
if (x.Length != y.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 5)
{
throw new ArgumentException("The given array is too small. It must be at least 5 long.", nameof(x));
}
/* Prepare divided differences (diff) and weights (w) */
var diff = new double[x.Length - 1];
var weights = new double[x.Length - 1];
for (int i = 0; i < diff.Length; i++)
{
diff[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]);
}
for (int i = 1; i < weights.Length; i++)
{
weights[i] = Math.Abs(diff[i] - diff[i - 1]);
}
/* Prepare Hermite interpolation scheme */
var dd = new double[x.Length];
for (int i = 2; i < dd.Length - 2; i++)
{
dd[i] = weights[i - 1].AlmostEqual(0.0) && weights[i + 1].AlmostEqual(0.0)
? (((x[i + 1] - x[i]) * diff[i - 1]) + ((x[i] - x[i - 1]) * diff[i])) / (x[i + 1] - x[i - 1])
: ((weights[i + 1] * diff[i - 1]) + (weights[i - 1] * diff[i])) / (weights[i + 1] + weights[i - 1]);
}
dd[0] = DifferentiateThreePoint(x, y, 0, 0, 1, 2);
dd[1] = DifferentiateThreePoint(x, y, 1, 0, 1, 2);
dd[x.Length - 2] = DifferentiateThreePoint(x, y, x.Length - 2, x.Length - 3, x.Length - 2, x.Length - 1);
dd[x.Length - 1] = DifferentiateThreePoint(x, y, x.Length - 1, x.Length - 3, x.Length - 2, x.Length - 1);
/* Build Akima spline using Hermite interpolation scheme */
return InterpolateHermiteSorted(x, y, dd);
}
/// <summary>
/// Create a piecewise cubic Hermite interpolating polynomial from an unsorted set of (x,y) value pairs.
/// Monotone-preserving interpolation with continuous first derivative.
/// </summary>
public static CubicSpline InterpolatePchipSorted(double[] x, double[] y)
{
// Implementation based on "Numerical Computing with Matlab" (Moler, 2004).
if (x.Length != y.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 3)
{
throw new ArgumentException("The given array is too small. It must be at least 3 long.", nameof(x));
}
var m = new double[x.Length - 1];
for (int i = 0; i < m.Length; i++)
{
m[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]);
}
var dd = new double[x.Length];
var hPrev = x[1] - x[0];
// This check is quite costly as it usually involves a Math.Pow().
var mPrevIs0 = m[0].AlmostEqual(0.0);
for (var i = 1; i < x.Length - 1; ++i)
{
var h = x[i + 1] - x[i];
var mIs0 = m[i].AlmostEqual(0.0);
if (mIs0 || mPrevIs0 || Math.Sign(m[i]) != Math.Sign(m[i - 1]))
{
dd[i] = 0;
}
else
{
// Weighted harmonic mean of each slope.
var w1 = 2 * h + hPrev;
var w2 = h + 2 * hPrev;
dd[i] = (w1 + w2) / (w1 / m[i - 1] + w2 / m[i]);
}
hPrev = h;
mPrevIs0 = mIs0;
}
// Special case end-points.
dd[0] = PchipEndPoints(x[1] - x[0], x[2] - x[1], m[0], m[1]);
dd[dd.Length - 1] = PchipEndPoints(
x[x.Length - 1] - x[x.Length - 2],
x[x.Length - 2] - x[x.Length - 3],
m[m.Length - 1],
m[m.Length - 2]);
return InterpolateHermiteSorted(x, y, dd);
}
private static double PchipEndPoints(double h0, double h1, double m0, double m1)
{
// One-sided, shape-preserving, three-point estimate for the derivative.
var d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1);
if (Math.Sign(d) != Math.Sign(m0))
{
return 0.0;
}
if (Math.Sign(m0) != Math.Sign(m1) && (Math.Abs(d) > 3 * Math.Abs(m0)))
{
return 3 * m0;
}
return d;
}
/// <summary>
/// Create a cubic spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x,
/// and custom boundary/termination conditions.
/// </summary>
public static CubicSpline InterpolateBoundariesSorted(
double[] x,
double[] y,
SplineBoundaryCondition leftBoundaryCondition,
double leftBoundary,
SplineBoundaryCondition rightBoundaryCondition,
double rightBoundary)
{
if (x.Length != y.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 2)
{
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
}
int n = x.Length;
// normalize special cases
if ((n == 2)
&& (leftBoundaryCondition == SplineBoundaryCondition.ParabolicallyTerminated)
&& (rightBoundaryCondition == SplineBoundaryCondition.ParabolicallyTerminated))
{
leftBoundaryCondition = SplineBoundaryCondition.SecondDerivative;
leftBoundary = 0d;
rightBoundaryCondition = SplineBoundaryCondition.SecondDerivative;
rightBoundary = 0d;
}
if (leftBoundaryCondition == SplineBoundaryCondition.Natural)
{
leftBoundaryCondition = SplineBoundaryCondition.SecondDerivative;
leftBoundary = 0d;
}
if (rightBoundaryCondition == SplineBoundaryCondition.Natural)
{
rightBoundaryCondition = SplineBoundaryCondition.SecondDerivative;
rightBoundary = 0d;
}
var a1 = new double[n];
var a2 = new double[n];
var a3 = new double[n];
var b = new double[n];
// Left Boundary
switch (leftBoundaryCondition)
{
case SplineBoundaryCondition.ParabolicallyTerminated:
a1[0] = 0;
a2[0] = 1;
a3[0] = 1;
b[0] = 2 * (y[1] - y[0]) / (x[1] - x[0]);
break;
case SplineBoundaryCondition.FirstDerivative:
a1[0] = 0;
a2[0] = 1;
a3[0] = 0;
b[0] = leftBoundary;
break;
case SplineBoundaryCondition.SecondDerivative:
a1[0] = 0;
a2[0] = 2;
a3[0] = 1;
b[0] = (3 * ((y[1] - y[0]) / (x[1] - x[0]))) - (0.5 * leftBoundary * (x[1] - x[0]));
break;
default:
throw new NotSupportedException("Invalid Left Boundary Condition.");
}
// Central Conditions
for (int i = 1; i < x.Length - 1; i++)
{
a1[i] = x[i + 1] - x[i];
a2[i] = 2 * (x[i + 1] - x[i - 1]);
a3[i] = x[i] - x[i - 1];
b[i] = (3 * (y[i] - y[i - 1]) / (x[i] - x[i - 1]) * (x[i + 1] - x[i])) + (3 * (y[i + 1] - y[i]) / (x[i + 1] - x[i]) * (x[i] - x[i - 1]));
}
// Right Boundary
switch (rightBoundaryCondition)
{
case SplineBoundaryCondition.ParabolicallyTerminated:
a1[n - 1] = 1;
a2[n - 1] = 1;
a3[n - 1] = 0;
b[n - 1] = 2 * (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2]);
break;
case SplineBoundaryCondition.FirstDerivative:
a1[n - 1] = 0;
a2[n - 1] = 1;
a3[n - 1] = 0;
b[n - 1] = rightBoundary;
break;
case SplineBoundaryCondition.SecondDerivative:
a1[n - 1] = 1;
a2[n - 1] = 2;
a3[n - 1] = 0;
b[n - 1] = (3 * (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2])) + (0.5 * rightBoundary * (x[n - 1] - x[n - 2]));
break;
default:
throw new NotSupportedException("Invalid Right Boundary Condition.");
}
// Build Spline
double[] dd = SolveTridiagonal(a1, a2, a3, b);
return InterpolateHermiteSorted(x, y, dd);
}
/// <summary>
/// Create a natural cubic spline interpolation from a set of (x,y) value pairs
/// and zero second derivatives at the two boundaries, sorted ascendingly by x.
/// </summary>
public static CubicSpline InterpolateNaturalSorted(double[] x, double[] y)
{
return InterpolateBoundariesSorted(x, y, SplineBoundaryCondition.SecondDerivative, 0.0, SplineBoundaryCondition.SecondDerivative, 0.0);
}
/// <summary>
/// Three-Point Differentiation Helper.
/// </summary>
/// <param name="xx">Sample Points t.</param>
/// <param name="yy">Sample Values x(t).</param>
/// <param name="indexT">Index of the point of the differentiation.</param>
/// <param name="index0">Index of the first sample.</param>
/// <param name="index1">Index of the second sample.</param>
/// <param name="index2">Index of the third sample.</param>
/// <returns>The derivative approximation.</returns>
private static double DifferentiateThreePoint(double[] xx, double[] yy, int indexT, int index0, int index1, int index2)
{
double x0 = yy[index0];
double x1 = yy[index1];
double x2 = yy[index2];
double t = xx[indexT] - xx[index0];
double t1 = xx[index1] - xx[index0];
double t2 = xx[index2] - xx[index0];
double a = (x2 - x0 - (t2 / t1 * (x1 - x0))) / (t2 * (t2 - t1));
double b = (x1 - x0 - a * t1 * t1) / t1;
return (2 * a * t) + b;
}
/// <summary>
/// Tridiagonal Solve Helper.
/// </summary>
/// <param name="a">The a-vector[n].</param>
/// <param name="b">The b-vector[n], will be modified by this function.</param>
/// <param name="c">The c-vector[n].</param>
/// <param name="d">The d-vector[n], will be modified by this function.</param>
/// <returns>The x-vector[n]</returns>
private static double[] SolveTridiagonal(double[] a, double[] b, double[] c, double[] d)
{
for (int k = 1; k < a.Length; k++)
{
double t = a[k] / b[k - 1];
b[k] = b[k] - (t * c[k - 1]);
d[k] = d[k] - (t * d[k - 1]);
}
var x = new double[a.Length];
x[x.Length - 1] = d[d.Length - 1] / b[b.Length - 1];
for (int k = x.Length - 2; k >= 0; k--)
{
x[k] = (d[k] - (c[k] * x[k + 1])) / b[k];
}
return x;
}
/// <summary>
/// Interpolate at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <returns>Interpolated value x(t).</returns>
public double Interpolate(double t)
{
int k = LeftSegmentIndex(t);
var x = t - _x[k];
return _c0[k] + x * (_c1[k] + x * (_c2[k] + x * _c3[k]));
}
/// <summary>
/// Differentiate at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <returns>Interpolated first derivative at point t.</returns>
public double Differentiate(double t)
{
int k = LeftSegmentIndex(t);
var x = t - _x[k];
return _c1[k] + x * (2 * _c2[k] + x * 3 * _c3[k]);
}
/// <summary>
/// Differentiate twice at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <returns>Interpolated second derivative at point t.</returns>
public double Differentiate2(double t)
{
int k = LeftSegmentIndex(t);
var x = t - _x[k];
return 2 * _c2[k] + x * 6 * _c3[k];
}
/// <summary>
/// Indefinite integral at point t.
/// </summary>
/// <param name="t">Point t to integrate at.</param>
public double Integrate(double t)
{
int k = LeftSegmentIndex(t);
var x = t - _x[k];
return _indefiniteIntegral.Value[k] + x * (_c0[k] + x * (_c1[k] / 2 + x * (_c2[k] / 3 + x * _c3[k] / 4)));
}
/// <summary>
/// Definite integral between points a and b.
/// </summary>
/// <param name="a">Left bound of the integration interval [a,b].</param>
/// <param name="b">Right bound of the integration interval [a,b].</param>
public double Integrate(double a, double b)
{
return Integrate(b) - Integrate(a);
}
private double[] ComputeIndefiniteIntegral()
{
var integral = new double[_c1.Length];
for (int i = 0; i < integral.Length - 1; i++)
{
double w = _x[i + 1] - _x[i];
integral[i + 1] = integral[i] + w * (_c0[i] + w * (_c1[i] / 2 + w * (_c2[i] / 3 + w * _c3[i] / 4)));
}
return integral;
}
/// <summary>
/// Find the index of the greatest sample point smaller than t,
/// or the left index of the closest segment for extrapolation.
/// </summary>
private int LeftSegmentIndex(double t)
{
int index = Array.BinarySearch(_x, t);
if (index < 0)
{
index = ~index - 1;
}
return Math.Min(Math.Max(index, 0), _x.Length - 2);
}
}
}