csharpc-sharpdotnetxamlavaloniauicross-platformcross-platform-xamlavaloniaguimulti-platformuser-interfacedotnetcore
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.7 KiB
106 lines
3.7 KiB
using System;
|
|
using System.Numerics;
|
|
using System.Runtime.InteropServices;
|
|
using Avalonia.Media;
|
|
using Xunit;
|
|
|
|
namespace Avalonia.Visuals.UnitTests;
|
|
|
|
/// <summary>
|
|
/// These tests use the "official" Matrix4x4 and Matrix3x2 from the System.Numerics namespace, to validate
|
|
/// that Avalonias own implementation of a 3x3 Matrix works correctly.
|
|
/// </summary>
|
|
public class MatrixTests
|
|
{
|
|
/// <summary>
|
|
/// Because Avalonia is working internally with doubles, but System.Numerics Vector and Matrix implementations
|
|
/// only make use of floats, we need to reduce precision, comparing them. It should be sufficient to compare
|
|
/// 5 fractional digits to ensure, that the result is correct.
|
|
/// </summary>
|
|
/// <param name="expected">The expected vector</param>
|
|
/// <param name="actual">The actual transformed point</param>
|
|
private static void AssertCoordinatesEqualWithReducedPrecision(Vector2 expected, Point actual)
|
|
{
|
|
double ReducePrecision(double input) => Math.Truncate(input * 10000);
|
|
|
|
var expectedX = ReducePrecision(expected.X);
|
|
var expectedY = ReducePrecision(expected.Y);
|
|
|
|
var actualX = ReducePrecision(actual.X);
|
|
var actualY = ReducePrecision(actual.Y);
|
|
|
|
Assert.Equal(expectedX, actualX);
|
|
Assert.Equal(expectedY, actualY);
|
|
}
|
|
|
|
[Fact]
|
|
public void Transform_Point_Should_Return_Correct_Value_For_Translated_Matrix()
|
|
{
|
|
var vector2 = Vector2.Transform(
|
|
new Vector2(1, 1),
|
|
Matrix3x2.CreateTranslation(2, 2));
|
|
var expected = new Point(vector2.X, vector2.Y);
|
|
|
|
var matrix = Matrix.CreateTranslation(2, 2);
|
|
var point = new Point(1, 1);
|
|
var transformedPoint = matrix.Transform(point);
|
|
|
|
Assert.Equal(expected, transformedPoint);
|
|
}
|
|
|
|
[Fact]
|
|
public void Transform_Point_Should_Return_Correct_Value_For_Rotated_Matrix()
|
|
{
|
|
var expected = Vector2.Transform(
|
|
new Vector2(0, 10),
|
|
Matrix3x2.CreateRotation((float)Matrix.ToRadians(45)));
|
|
|
|
var matrix = Matrix.CreateRotation(Matrix.ToRadians(45));
|
|
var point = new Point(0, 10);
|
|
var actual = matrix.Transform(point);
|
|
|
|
AssertCoordinatesEqualWithReducedPrecision(expected, actual);
|
|
}
|
|
|
|
[Fact]
|
|
public void Transform_Point_Should_Return_Correct_Value_For_Rotate_Matrix_With_Center_Point()
|
|
{
|
|
var expected = Vector2.Transform(
|
|
new Vector2(0, 10),
|
|
Matrix3x2.CreateRotation((float)Matrix.ToRadians(30), new Vector2(3, 5)));
|
|
|
|
var matrix = Matrix.CreateRotation(Matrix.ToRadians(30), new Point(3, 5));
|
|
var point = new Point(0, 10);
|
|
var actual = matrix.Transform(point);
|
|
|
|
AssertCoordinatesEqualWithReducedPrecision(expected, actual);
|
|
}
|
|
|
|
[Fact]
|
|
public void Transform_Point_Should_Return_Correct_Value_For_Scaled_Matrix()
|
|
{
|
|
var vector2 = Vector2.Transform(
|
|
new Vector2(1, 1),
|
|
Matrix3x2.CreateScale(2, 2));
|
|
var expected = new Point(vector2.X, vector2.Y);
|
|
var matrix = Matrix.CreateScale(2, 2);
|
|
var point = new Point(1, 1);
|
|
var actual = matrix.Transform(point);
|
|
|
|
Assert.Equal(expected, actual);
|
|
}
|
|
|
|
[Fact]
|
|
public void Transform_Point_Should_Return_Correct_Value_For_Skewed_Matrix()
|
|
{
|
|
var expected = Vector2.Transform(
|
|
new Vector2(1, 1),
|
|
Matrix3x2.CreateSkew(30, 20));
|
|
|
|
var matrix = Matrix.CreateSkew(30, 20);
|
|
var point = new Point(1, 1);
|
|
var actual = matrix.Transform(point);
|
|
|
|
AssertCoordinatesEqualWithReducedPrecision(expected, actual);
|
|
}
|
|
}
|
|
|