csharpc-sharpdotnetxamlavaloniauicross-platformcross-platform-xamlavaloniaguimulti-platformuser-interfacedotnetcore
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
582 lines
21 KiB
582 lines
21 KiB
using System;
|
|
using System.Globalization;
|
|
using System.Linq;
|
|
using System.Numerics;
|
|
using Avalonia.Utilities;
|
|
|
|
namespace Avalonia
|
|
{
|
|
/// <summary>
|
|
/// A 3x3 matrix.
|
|
/// </summary>
|
|
/// <remarks>Matrix layout:
|
|
/// | 1st col | 2nd col | 3r col |
|
|
/// 1st row | scaleX | skewY | perspX |
|
|
/// 2nd row | skewX | scaleY | perspY |
|
|
/// 3rd row | transX | transY | perspZ |
|
|
///
|
|
/// Note: Skia.SkMatrix uses a transposed layout (where for example skewX/skewY and persp0/transX are swapped).
|
|
/// </remarks>
|
|
#if !BUILDTASK
|
|
public
|
|
#endif
|
|
readonly struct Matrix : IEquatable<Matrix>
|
|
{
|
|
private readonly double _m11;
|
|
private readonly double _m12;
|
|
private readonly double _m13;
|
|
private readonly double _m21;
|
|
private readonly double _m22;
|
|
private readonly double _m23;
|
|
private readonly double _m31;
|
|
private readonly double _m32;
|
|
private readonly double _m33;
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="Matrix"/> struct (equivalent to a 2x3 Matrix without perspective).
|
|
/// </summary>
|
|
/// <param name="scaleX">The first element of the first row.</param>
|
|
/// <param name="skewY">The second element of the first row.</param>
|
|
/// <param name="skewX">The first element of the second row.</param>
|
|
/// <param name="scaleY">The second element of the second row.</param>
|
|
/// <param name="offsetX">The first element of the third row.</param>
|
|
/// <param name="offsetY">The second element of the third row.</param>
|
|
public Matrix(
|
|
double scaleX,
|
|
double skewY,
|
|
double skewX,
|
|
double scaleY,
|
|
double offsetX,
|
|
double offsetY) : this( scaleX, skewY, 0, skewX, scaleY, 0, offsetX, offsetY, 1)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="Matrix"/> struct.
|
|
/// </summary>
|
|
/// <param name="scaleX">The first element of the first row.</param>
|
|
/// <param name="skewY">The second element of the first row.</param>
|
|
/// <param name="perspX">The third element of the first row.</param>
|
|
/// <param name="skewX">The first element of the second row.</param>
|
|
/// <param name="scaleY">The second element of the second row.</param>
|
|
/// <param name="perspY">The third element of the second row.</param>
|
|
/// <param name="offsetX">The first element of the third row.</param>
|
|
/// <param name="offsetY">The second element of the third row.</param>
|
|
/// <param name="perspZ">The third element of the third row.</param>
|
|
public Matrix(
|
|
double scaleX,
|
|
double skewY,
|
|
double perspX,
|
|
double skewX,
|
|
double scaleY,
|
|
double perspY,
|
|
double offsetX,
|
|
double offsetY,
|
|
double perspZ)
|
|
{
|
|
_m11 = scaleX;
|
|
_m12 = skewY;
|
|
_m13 = perspX;
|
|
_m21 = skewX;
|
|
_m22 = scaleY;
|
|
_m23 = perspY;
|
|
_m31 = offsetX;
|
|
_m32 = offsetY;
|
|
_m33 = perspZ;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns the multiplicative identity matrix.
|
|
/// </summary>
|
|
public static Matrix Identity { get; } = new Matrix(
|
|
1.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0,
|
|
0.0, 0.0, 1.0);
|
|
|
|
/// <summary>
|
|
/// Returns whether the matrix is the identity matrix.
|
|
/// </summary>
|
|
public bool IsIdentity => Equals(Identity);
|
|
|
|
/// <summary>
|
|
/// HasInverse Property - returns true if this matrix is invertible, false otherwise.
|
|
/// </summary>
|
|
public bool HasInverse => !MathUtilities.IsZero(GetDeterminant());
|
|
|
|
/// <summary>
|
|
/// The first element of the first row (scaleX).
|
|
/// </summary>
|
|
public double M11 => _m11;
|
|
|
|
/// <summary>
|
|
/// The second element of the first row (skewY).
|
|
/// </summary>
|
|
public double M12 => _m12;
|
|
|
|
/// <summary>
|
|
/// The third element of the first row (perspX: input x-axis perspective factor).
|
|
/// </summary>
|
|
public double M13 => _m13;
|
|
|
|
/// <summary>
|
|
/// The first element of the second row (skewX).
|
|
/// </summary>
|
|
public double M21 => _m21;
|
|
|
|
/// <summary>
|
|
/// The second element of the second row (scaleY).
|
|
/// </summary>
|
|
public double M22 => _m22;
|
|
|
|
/// <summary>
|
|
/// The third element of the second row (perspY: input y-axis perspective factor).
|
|
/// </summary>
|
|
public double M23 => _m23;
|
|
|
|
/// <summary>
|
|
/// The first element of the third row (offsetX/translateX).
|
|
/// </summary>
|
|
public double M31 => _m31;
|
|
|
|
/// <summary>
|
|
/// The second element of the third row (offsetY/translateY).
|
|
/// </summary>
|
|
public double M32 => _m32;
|
|
|
|
/// <summary>
|
|
/// The third element of the third row (perspZ: perspective scale factor).
|
|
/// </summary>
|
|
public double M33 => _m33;
|
|
|
|
/// <summary>
|
|
/// Multiplies two matrices together and returns the resulting matrix.
|
|
/// </summary>
|
|
/// <param name="value1">The first source matrix.</param>
|
|
/// <param name="value2">The second source matrix.</param>
|
|
/// <returns>The product matrix.</returns>
|
|
public static Matrix operator *(Matrix value1, Matrix value2)
|
|
{
|
|
return new Matrix(
|
|
(value1.M11 * value2.M11) + (value1.M12 * value2.M21) + (value1.M13 * value2.M31),
|
|
(value1.M11 * value2.M12) + (value1.M12 * value2.M22) + (value1.M13 * value2.M32),
|
|
(value1.M11 * value2.M13) + (value1.M12 * value2.M23) + (value1.M13 * value2.M33),
|
|
(value1.M21 * value2.M11) + (value1.M22 * value2.M21) + (value1.M23 * value2.M31),
|
|
(value1.M21 * value2.M12) + (value1.M22 * value2.M22) + (value1.M23 * value2.M32),
|
|
(value1.M21 * value2.M13) + (value1.M22 * value2.M23) + (value1.M23 * value2.M33),
|
|
(value1.M31 * value2.M11) + (value1.M32 * value2.M21) + (value1.M33 * value2.M31),
|
|
(value1.M31 * value2.M12) + (value1.M32 * value2.M22) + (value1.M33 * value2.M32),
|
|
(value1.M31 * value2.M13) + (value1.M32 * value2.M23) + (value1.M33 * value2.M33));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Negates the given matrix by multiplying all values by -1.
|
|
/// </summary>
|
|
/// <param name="value">The source matrix.</param>
|
|
/// <returns>The negated matrix.</returns>
|
|
public static Matrix operator -(Matrix value)
|
|
{
|
|
return value.Invert();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a boolean indicating whether the given matrices are equal.
|
|
/// </summary>
|
|
/// <param name="value1">The first source matrix.</param>
|
|
/// <param name="value2">The second source matrix.</param>
|
|
/// <returns>True if the matrices are equal; False otherwise.</returns>
|
|
public static bool operator ==(Matrix value1, Matrix value2)
|
|
{
|
|
return value1.Equals(value2);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a boolean indicating whether the given matrices are not equal.
|
|
/// </summary>
|
|
/// <param name="value1">The first source matrix.</param>
|
|
/// <param name="value2">The second source matrix.</param>
|
|
/// <returns>True if the matrices are not equal; False if they are equal.</returns>
|
|
public static bool operator !=(Matrix value1, Matrix value2)
|
|
{
|
|
return !value1.Equals(value2);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a rotation matrix using the given rotation in radians.
|
|
/// </summary>
|
|
/// <param name="radians">The amount of rotation, in radians.</param>
|
|
/// <returns>A rotation matrix.</returns>
|
|
public static Matrix CreateRotation(double radians)
|
|
{
|
|
double cos = Math.Cos(radians);
|
|
double sin = Math.Sin(radians);
|
|
return new Matrix(cos, sin, -sin, cos, 0, 0);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a skew matrix from the given axis skew angles in radians.
|
|
/// </summary>
|
|
/// <param name="xAngle">The amount of skew along the X-axis, in radians.</param>
|
|
/// <param name="yAngle">The amount of skew along the Y-axis, in radians.</param>
|
|
/// <returns>A rotation matrix.</returns>
|
|
public static Matrix CreateSkew(double xAngle, double yAngle)
|
|
{
|
|
double tanX = Math.Tan(xAngle);
|
|
double tanY = Math.Tan(yAngle);
|
|
return new Matrix(1.0, tanY, tanX, 1.0, 0.0, 0.0);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix from the given X and Y components.
|
|
/// </summary>
|
|
/// <param name="xScale">Value to scale by on the X-axis.</param>
|
|
/// <param name="yScale">Value to scale by on the Y-axis.</param>
|
|
/// <returns>A scaling matrix.</returns>
|
|
public static Matrix CreateScale(double xScale, double yScale)
|
|
{
|
|
return new Matrix(xScale, 0, 0, yScale, 0, 0);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix from the given vector scale.
|
|
/// </summary>
|
|
/// <param name="scales">The scale to use.</param>
|
|
/// <returns>A scaling matrix.</returns>
|
|
public static Matrix CreateScale(Vector scales)
|
|
{
|
|
return CreateScale(scales.X, scales.Y);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a translation matrix from the given vector.
|
|
/// </summary>
|
|
/// <param name="position">The translation position.</param>
|
|
/// <returns>A translation matrix.</returns>
|
|
public static Matrix CreateTranslation(Vector position)
|
|
{
|
|
return CreateTranslation(position.X, position.Y);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a translation matrix from the given X and Y components.
|
|
/// </summary>
|
|
/// <param name="xPosition">The X position.</param>
|
|
/// <param name="yPosition">The Y position.</param>
|
|
/// <returns>A translation matrix.</returns>
|
|
public static Matrix CreateTranslation(double xPosition, double yPosition)
|
|
{
|
|
return new Matrix(1.0, 0.0, 0.0, 1.0, xPosition, yPosition);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts an angle in degrees to radians.
|
|
/// </summary>
|
|
/// <param name="angle">The angle in degrees.</param>
|
|
/// <returns>The angle in radians.</returns>
|
|
public static double ToRadians(double angle)
|
|
{
|
|
return angle * 0.0174532925;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Appends another matrix as post-multiplication operation.
|
|
/// Equivalent to this * value;
|
|
/// </summary>
|
|
/// <param name="value">A matrix.</param>
|
|
/// <returns>Post-multiplied matrix.</returns>
|
|
public Matrix Append(Matrix value)
|
|
{
|
|
return this * value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Prepends another matrix as pre-multiplication operation.
|
|
/// Equivalent to value * this;
|
|
/// </summary>
|
|
/// <param name="value">A matrix.</param>
|
|
/// <returns>Pre-multiplied matrix.</returns>
|
|
public Matrix Prepend(Matrix value)
|
|
{
|
|
return value * this;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the determinant for this matrix.
|
|
/// </summary>
|
|
/// <returns>The determinant.</returns>
|
|
/// <remarks>
|
|
/// The determinant is calculated by expanding the matrix with a third column whose
|
|
/// values are (0,0,1).
|
|
/// </remarks>
|
|
public double GetDeterminant()
|
|
{
|
|
// implemented using "Laplace expansion":
|
|
return _m11 * (_m22 * _m33 - _m23 * _m32)
|
|
- _m12 * (_m21 * _m33 - _m23 * _m31)
|
|
+ _m13 * (_m21 * _m32 - _m22 * _m31);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms the point with the matrix
|
|
/// </summary>
|
|
/// <param name="p">The point to be transformed</param>
|
|
/// <returns>The transformed point</returns>
|
|
public Point Transform(Point p)
|
|
{
|
|
Point transformedResult;
|
|
|
|
// If this matrix contains a non-affine transform with need to extend
|
|
// the point to a 3D vector and flatten it back for 2d display
|
|
// by multiplying X and Y with the inverse of the Z axis.
|
|
// The code below also works with affine transformations, but for performance (and compatibility)
|
|
// reasons we will use the more complex calculation only if necessary
|
|
if (ContainsPerspective())
|
|
{
|
|
var m44 = new Matrix4x4(
|
|
(float)M11, (float)M12, (float)M13, 0,
|
|
(float)M21, (float)M22, (float)M23, 0,
|
|
(float)M31, (float)M32, (float)M33, 0,
|
|
0, 0, 0, 1
|
|
);
|
|
|
|
var vector = new Vector3((float)p.X, (float)p.Y, 1);
|
|
var transformedVector = Vector3.Transform(vector, m44);
|
|
var z = 1 / transformedVector.Z;
|
|
|
|
transformedResult = new Point(transformedVector.X * z, transformedVector.Y * z);
|
|
}
|
|
else
|
|
{
|
|
return new Point(
|
|
(p.X * M11) + (p.Y * M21) + M31,
|
|
(p.X * M12) + (p.Y * M22) + M32);
|
|
}
|
|
|
|
return transformedResult;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a boolean indicating whether the matrix is equal to the other given matrix.
|
|
/// </summary>
|
|
/// <param name="other">The other matrix to test equality against.</param>
|
|
/// <returns>True if this matrix is equal to other; False otherwise.</returns>
|
|
public bool Equals(Matrix other)
|
|
{
|
|
// ReSharper disable CompareOfFloatsByEqualityOperator
|
|
return _m11 == other.M11 &&
|
|
_m12 == other.M12 &&
|
|
_m13 == other.M13 &&
|
|
_m21 == other.M21 &&
|
|
_m22 == other.M22 &&
|
|
_m23 == other.M23 &&
|
|
_m31 == other.M31 &&
|
|
_m32 == other.M32 &&
|
|
_m33 == other.M33;
|
|
// ReSharper restore CompareOfFloatsByEqualityOperator
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a boolean indicating whether the given Object is equal to this matrix instance.
|
|
/// </summary>
|
|
/// <param name="obj">The Object to compare against.</param>
|
|
/// <returns>True if the Object is equal to this matrix; False otherwise.</returns>
|
|
public override bool Equals(object? obj) => obj is Matrix other && Equals(other);
|
|
|
|
/// <summary>
|
|
/// Returns the hash code for this instance.
|
|
/// </summary>
|
|
/// <returns>The hash code.</returns>
|
|
public override int GetHashCode()
|
|
{
|
|
return (_m11, _m12, _m13, _m21, _m22, _m23, _m31, _m32, _m33).GetHashCode();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determines if the current matrix contains perspective (non-affine) transforms (true) or only (affine) transforms that could be mapped into an 2x3 matrix (false).
|
|
/// </summary>
|
|
public bool ContainsPerspective()
|
|
{
|
|
|
|
// ReSharper disable CompareOfFloatsByEqualityOperator
|
|
return _m13 != 0 || _m23 != 0 || _m33 != 1;
|
|
// ReSharper restore CompareOfFloatsByEqualityOperator
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a String representing this matrix instance.
|
|
/// </summary>
|
|
/// <returns>The string representation.</returns>
|
|
public override string ToString()
|
|
{
|
|
CultureInfo ci = CultureInfo.CurrentCulture;
|
|
|
|
string msg;
|
|
double[] values;
|
|
|
|
if (ContainsPerspective())
|
|
{
|
|
msg = "{{ {{M11:{0} M12:{1} M13:{2}}} {{M21:{3} M22:{4} M23:{5}}} {{M31:{6} M32:{7} M33:{8}}} }}";
|
|
values = new[] { M11, M12, M13, M21, M22, M23, M31, M32, M33 };
|
|
}
|
|
else
|
|
{
|
|
msg = "{{ {{M11:{0} M12:{1}}} {{M21:{2} M22:{3}}} {{M31:{4} M32:{5}}} }}";
|
|
values = new[] { M11, M12, M21, M22, M31, M32 };
|
|
}
|
|
|
|
return string.Format(
|
|
ci,
|
|
msg,
|
|
values.Select((v) => v.ToString(ci)).ToArray());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Attempts to invert the Matrix.
|
|
/// </summary>
|
|
/// <returns>The inverted matrix or <see langword="null"/> when matrix is not invertible.</returns>
|
|
public bool TryInvert(out Matrix inverted)
|
|
{
|
|
double d = GetDeterminant();
|
|
|
|
if (MathUtilities.IsZero(d))
|
|
{
|
|
inverted = default;
|
|
|
|
return false;
|
|
}
|
|
|
|
var invdet = 1 / d;
|
|
|
|
inverted = new Matrix(
|
|
(_m22 * _m33 - _m32 * _m23) * invdet,
|
|
(_m13 * _m32 - _m12 * _m33) * invdet,
|
|
(_m12 * _m23 - _m13 * _m22) * invdet,
|
|
(_m23 * _m31 - _m21 * _m33) * invdet,
|
|
(_m11 * _m33 - _m13 * _m31) * invdet,
|
|
(_m21 * _m13 - _m11 * _m23) * invdet,
|
|
(_m21 * _m32 - _m31 * _m22) * invdet,
|
|
(_m31 * _m12 - _m11 * _m32) * invdet,
|
|
(_m11 * _m22 - _m21 * _m12) * invdet
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Inverts the Matrix.
|
|
/// </summary>
|
|
/// <exception cref="InvalidOperationException">Matrix is not invertible.</exception>
|
|
/// <returns>The inverted matrix.</returns>
|
|
public Matrix Invert()
|
|
{
|
|
if (!TryInvert(out var inverted))
|
|
{
|
|
throw new InvalidOperationException("Transform is not invertible.");
|
|
}
|
|
|
|
return inverted;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Parses a <see cref="Matrix"/> string.
|
|
/// </summary>
|
|
/// <param name="s">Six or nine comma-delimited double values (m11, m12, m21, m22, offsetX, offsetY[, perspX, perspY, perspZ]) that describe the new <see cref="Matrix"/></param>
|
|
/// <returns>The <see cref="Matrix"/>.</returns>
|
|
public static Matrix Parse(string s)
|
|
{
|
|
// initialize to satisfy compiler - only used when retrieved from string.
|
|
double v8 = 0;
|
|
double v9 = 0;
|
|
|
|
using (var tokenizer = new StringTokenizer(s, CultureInfo.InvariantCulture, exceptionMessage: "Invalid Matrix."))
|
|
{
|
|
var v1 = tokenizer.ReadDouble();
|
|
var v2 = tokenizer.ReadDouble();
|
|
var v3 = tokenizer.ReadDouble();
|
|
var v4 = tokenizer.ReadDouble();
|
|
var v5 = tokenizer.ReadDouble();
|
|
var v6 = tokenizer.ReadDouble();
|
|
var persp = tokenizer.TryReadDouble(out var v7);
|
|
persp = persp && tokenizer.TryReadDouble(out v8);
|
|
persp = persp && tokenizer.TryReadDouble(out v9);
|
|
|
|
if (persp)
|
|
return new Matrix(v1, v2, v7, v3, v4, v8, v5, v6, v9);
|
|
else
|
|
return new Matrix(v1, v2, v3, v4, v5, v6);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Decomposes given matrix into transform operations.
|
|
/// </summary>
|
|
/// <param name="matrix">Matrix to decompose.</param>
|
|
/// <param name="decomposed">Decomposed matrix.</param>
|
|
/// <returns>The status of the operation.</returns>
|
|
public static bool TryDecomposeTransform(Matrix matrix, out Decomposed decomposed)
|
|
{
|
|
decomposed = default;
|
|
|
|
var determinant = matrix.GetDeterminant();
|
|
|
|
if (MathUtilities.IsZero(determinant) || matrix.ContainsPerspective())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
var m11 = matrix.M11;
|
|
var m21 = matrix.M21;
|
|
var m12 = matrix.M12;
|
|
var m22 = matrix.M22;
|
|
|
|
// Translation.
|
|
decomposed.Translate = new Vector(matrix.M31, matrix.M32);
|
|
|
|
// Scale sign.
|
|
var scaleX = 1d;
|
|
var scaleY = 1d;
|
|
|
|
if (determinant < 0)
|
|
{
|
|
if (m11 < m22)
|
|
{
|
|
scaleX *= -1d;
|
|
}
|
|
else
|
|
{
|
|
scaleY *= -1d;
|
|
}
|
|
}
|
|
|
|
// X Scale.
|
|
scaleX *= Math.Sqrt(m11 * m11 + m12 * m12);
|
|
|
|
m11 /= scaleX;
|
|
m12 /= scaleX;
|
|
|
|
// XY Shear.
|
|
double scaledShear = m11 * m21 + m12 * m22;
|
|
|
|
m21 -= m11 * scaledShear;
|
|
m22 -= m12 * scaledShear;
|
|
|
|
// Y Scale.
|
|
scaleY *= Math.Sqrt(m21 * m21 + m22 * m22);
|
|
|
|
decomposed.Scale = new Vector(scaleX, scaleY);
|
|
decomposed.Skew = new Vector(scaledShear / scaleY, 0d);
|
|
decomposed.Angle = Math.Atan2(m12, m11);
|
|
|
|
return true;
|
|
}
|
|
|
|
public record struct Decomposed
|
|
{
|
|
public Vector Translate;
|
|
public Vector Scale;
|
|
public Vector Skew;
|
|
public double Angle;
|
|
}
|
|
}
|
|
}
|
|
|