A cross-platform UI framework for .NET
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

582 lines
21 KiB

using System;
using System.Globalization;
using System.Linq;
using System.Numerics;
using Avalonia.Utilities;
namespace Avalonia
{
/// <summary>
/// A 3x3 matrix.
/// </summary>
/// <remarks>Matrix layout:
/// | 1st col | 2nd col | 3r col |
/// 1st row | scaleX | skewY | perspX |
/// 2nd row | skewX | scaleY | perspY |
/// 3rd row | transX | transY | perspZ |
///
/// Note: Skia.SkMatrix uses a transposed layout (where for example skewX/skewY and persp0/transX are swapped).
/// </remarks>
#if !BUILDTASK
public
#endif
readonly struct Matrix : IEquatable<Matrix>
{
private readonly double _m11;
private readonly double _m12;
private readonly double _m13;
private readonly double _m21;
private readonly double _m22;
private readonly double _m23;
private readonly double _m31;
private readonly double _m32;
private readonly double _m33;
/// <summary>
/// Initializes a new instance of the <see cref="Matrix"/> struct (equivalent to a 2x3 Matrix without perspective).
/// </summary>
/// <param name="scaleX">The first element of the first row.</param>
/// <param name="skewY">The second element of the first row.</param>
/// <param name="skewX">The first element of the second row.</param>
/// <param name="scaleY">The second element of the second row.</param>
/// <param name="offsetX">The first element of the third row.</param>
/// <param name="offsetY">The second element of the third row.</param>
public Matrix(
double scaleX,
double skewY,
double skewX,
double scaleY,
double offsetX,
double offsetY) : this( scaleX, skewY, 0, skewX, scaleY, 0, offsetX, offsetY, 1)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Matrix"/> struct.
/// </summary>
/// <param name="scaleX">The first element of the first row.</param>
/// <param name="skewY">The second element of the first row.</param>
/// <param name="perspX">The third element of the first row.</param>
/// <param name="skewX">The first element of the second row.</param>
/// <param name="scaleY">The second element of the second row.</param>
/// <param name="perspY">The third element of the second row.</param>
/// <param name="offsetX">The first element of the third row.</param>
/// <param name="offsetY">The second element of the third row.</param>
/// <param name="perspZ">The third element of the third row.</param>
public Matrix(
double scaleX,
double skewY,
double perspX,
double skewX,
double scaleY,
double perspY,
double offsetX,
double offsetY,
double perspZ)
{
_m11 = scaleX;
_m12 = skewY;
_m13 = perspX;
_m21 = skewX;
_m22 = scaleY;
_m23 = perspY;
_m31 = offsetX;
_m32 = offsetY;
_m33 = perspZ;
}
/// <summary>
/// Returns the multiplicative identity matrix.
/// </summary>
public static Matrix Identity { get; } = new Matrix(
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0);
/// <summary>
/// Returns whether the matrix is the identity matrix.
/// </summary>
public bool IsIdentity => Equals(Identity);
/// <summary>
/// HasInverse Property - returns true if this matrix is invertible, false otherwise.
/// </summary>
public bool HasInverse => !MathUtilities.IsZero(GetDeterminant());
/// <summary>
/// The first element of the first row (scaleX).
/// </summary>
public double M11 => _m11;
/// <summary>
/// The second element of the first row (skewY).
/// </summary>
public double M12 => _m12;
/// <summary>
/// The third element of the first row (perspX: input x-axis perspective factor).
/// </summary>
public double M13 => _m13;
/// <summary>
/// The first element of the second row (skewX).
/// </summary>
public double M21 => _m21;
/// <summary>
/// The second element of the second row (scaleY).
/// </summary>
public double M22 => _m22;
/// <summary>
/// The third element of the second row (perspY: input y-axis perspective factor).
/// </summary>
public double M23 => _m23;
/// <summary>
/// The first element of the third row (offsetX/translateX).
/// </summary>
public double M31 => _m31;
/// <summary>
/// The second element of the third row (offsetY/translateY).
/// </summary>
public double M32 => _m32;
/// <summary>
/// The third element of the third row (perspZ: perspective scale factor).
/// </summary>
public double M33 => _m33;
/// <summary>
/// Multiplies two matrices together and returns the resulting matrix.
/// </summary>
/// <param name="value1">The first source matrix.</param>
/// <param name="value2">The second source matrix.</param>
/// <returns>The product matrix.</returns>
public static Matrix operator *(Matrix value1, Matrix value2)
{
return new Matrix(
(value1.M11 * value2.M11) + (value1.M12 * value2.M21) + (value1.M13 * value2.M31),
(value1.M11 * value2.M12) + (value1.M12 * value2.M22) + (value1.M13 * value2.M32),
(value1.M11 * value2.M13) + (value1.M12 * value2.M23) + (value1.M13 * value2.M33),
(value1.M21 * value2.M11) + (value1.M22 * value2.M21) + (value1.M23 * value2.M31),
(value1.M21 * value2.M12) + (value1.M22 * value2.M22) + (value1.M23 * value2.M32),
(value1.M21 * value2.M13) + (value1.M22 * value2.M23) + (value1.M23 * value2.M33),
(value1.M31 * value2.M11) + (value1.M32 * value2.M21) + (value1.M33 * value2.M31),
(value1.M31 * value2.M12) + (value1.M32 * value2.M22) + (value1.M33 * value2.M32),
(value1.M31 * value2.M13) + (value1.M32 * value2.M23) + (value1.M33 * value2.M33));
}
/// <summary>
/// Negates the given matrix by multiplying all values by -1.
/// </summary>
/// <param name="value">The source matrix.</param>
/// <returns>The negated matrix.</returns>
public static Matrix operator -(Matrix value)
{
return value.Invert();
}
/// <summary>
/// Returns a boolean indicating whether the given matrices are equal.
/// </summary>
/// <param name="value1">The first source matrix.</param>
/// <param name="value2">The second source matrix.</param>
/// <returns>True if the matrices are equal; False otherwise.</returns>
public static bool operator ==(Matrix value1, Matrix value2)
{
return value1.Equals(value2);
}
/// <summary>
/// Returns a boolean indicating whether the given matrices are not equal.
/// </summary>
/// <param name="value1">The first source matrix.</param>
/// <param name="value2">The second source matrix.</param>
/// <returns>True if the matrices are not equal; False if they are equal.</returns>
public static bool operator !=(Matrix value1, Matrix value2)
{
return !value1.Equals(value2);
}
/// <summary>
/// Creates a rotation matrix using the given rotation in radians.
/// </summary>
/// <param name="radians">The amount of rotation, in radians.</param>
/// <returns>A rotation matrix.</returns>
public static Matrix CreateRotation(double radians)
{
double cos = Math.Cos(radians);
double sin = Math.Sin(radians);
return new Matrix(cos, sin, -sin, cos, 0, 0);
}
/// <summary>
/// Creates a skew matrix from the given axis skew angles in radians.
/// </summary>
/// <param name="xAngle">The amount of skew along the X-axis, in radians.</param>
/// <param name="yAngle">The amount of skew along the Y-axis, in radians.</param>
/// <returns>A rotation matrix.</returns>
public static Matrix CreateSkew(double xAngle, double yAngle)
{
double tanX = Math.Tan(xAngle);
double tanY = Math.Tan(yAngle);
return new Matrix(1.0, tanY, tanX, 1.0, 0.0, 0.0);
}
/// <summary>
/// Creates a scale matrix from the given X and Y components.
/// </summary>
/// <param name="xScale">Value to scale by on the X-axis.</param>
/// <param name="yScale">Value to scale by on the Y-axis.</param>
/// <returns>A scaling matrix.</returns>
public static Matrix CreateScale(double xScale, double yScale)
{
return new Matrix(xScale, 0, 0, yScale, 0, 0);
}
/// <summary>
/// Creates a scale matrix from the given vector scale.
/// </summary>
/// <param name="scales">The scale to use.</param>
/// <returns>A scaling matrix.</returns>
public static Matrix CreateScale(Vector scales)
{
return CreateScale(scales.X, scales.Y);
}
/// <summary>
/// Creates a translation matrix from the given vector.
/// </summary>
/// <param name="position">The translation position.</param>
/// <returns>A translation matrix.</returns>
public static Matrix CreateTranslation(Vector position)
{
return CreateTranslation(position.X, position.Y);
}
/// <summary>
/// Creates a translation matrix from the given X and Y components.
/// </summary>
/// <param name="xPosition">The X position.</param>
/// <param name="yPosition">The Y position.</param>
/// <returns>A translation matrix.</returns>
public static Matrix CreateTranslation(double xPosition, double yPosition)
{
return new Matrix(1.0, 0.0, 0.0, 1.0, xPosition, yPosition);
}
/// <summary>
/// Converts an angle in degrees to radians.
/// </summary>
/// <param name="angle">The angle in degrees.</param>
/// <returns>The angle in radians.</returns>
public static double ToRadians(double angle)
{
return angle * 0.0174532925;
}
/// <summary>
/// Appends another matrix as post-multiplication operation.
/// Equivalent to this * value;
/// </summary>
/// <param name="value">A matrix.</param>
/// <returns>Post-multiplied matrix.</returns>
public Matrix Append(Matrix value)
{
return this * value;
}
/// <summary>
/// Prepends another matrix as pre-multiplication operation.
/// Equivalent to value * this;
/// </summary>
/// <param name="value">A matrix.</param>
/// <returns>Pre-multiplied matrix.</returns>
public Matrix Prepend(Matrix value)
{
return value * this;
}
/// <summary>
/// Calculates the determinant for this matrix.
/// </summary>
/// <returns>The determinant.</returns>
/// <remarks>
/// The determinant is calculated by expanding the matrix with a third column whose
/// values are (0,0,1).
/// </remarks>
public double GetDeterminant()
{
// implemented using "Laplace expansion":
return _m11 * (_m22 * _m33 - _m23 * _m32)
- _m12 * (_m21 * _m33 - _m23 * _m31)
+ _m13 * (_m21 * _m32 - _m22 * _m31);
}
/// <summary>
/// Transforms the point with the matrix
/// </summary>
/// <param name="p">The point to be transformed</param>
/// <returns>The transformed point</returns>
public Point Transform(Point p)
{
Point transformedResult;
// If this matrix contains a non-affine transform with need to extend
// the point to a 3D vector and flatten it back for 2d display
// by multiplying X and Y with the inverse of the Z axis.
// The code below also works with affine transformations, but for performance (and compatibility)
// reasons we will use the more complex calculation only if necessary
if (ContainsPerspective())
{
var m44 = new Matrix4x4(
(float)M11, (float)M12, (float)M13, 0,
(float)M21, (float)M22, (float)M23, 0,
(float)M31, (float)M32, (float)M33, 0,
0, 0, 0, 1
);
var vector = new Vector3((float)p.X, (float)p.Y, 1);
var transformedVector = Vector3.Transform(vector, m44);
var z = 1 / transformedVector.Z;
transformedResult = new Point(transformedVector.X * z, transformedVector.Y * z);
}
else
{
return new Point(
(p.X * M11) + (p.Y * M21) + M31,
(p.X * M12) + (p.Y * M22) + M32);
}
return transformedResult;
}
/// <summary>
/// Returns a boolean indicating whether the matrix is equal to the other given matrix.
/// </summary>
/// <param name="other">The other matrix to test equality against.</param>
/// <returns>True if this matrix is equal to other; False otherwise.</returns>
public bool Equals(Matrix other)
{
// ReSharper disable CompareOfFloatsByEqualityOperator
return _m11 == other.M11 &&
_m12 == other.M12 &&
_m13 == other.M13 &&
_m21 == other.M21 &&
_m22 == other.M22 &&
_m23 == other.M23 &&
_m31 == other.M31 &&
_m32 == other.M32 &&
_m33 == other.M33;
// ReSharper restore CompareOfFloatsByEqualityOperator
}
/// <summary>
/// Returns a boolean indicating whether the given Object is equal to this matrix instance.
/// </summary>
/// <param name="obj">The Object to compare against.</param>
/// <returns>True if the Object is equal to this matrix; False otherwise.</returns>
public override bool Equals(object? obj) => obj is Matrix other && Equals(other);
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>The hash code.</returns>
public override int GetHashCode()
{
return (_m11, _m12, _m13, _m21, _m22, _m23, _m31, _m32, _m33).GetHashCode();
}
/// <summary>
/// Determines if the current matrix contains perspective (non-affine) transforms (true) or only (affine) transforms that could be mapped into an 2x3 matrix (false).
/// </summary>
public bool ContainsPerspective()
{
// ReSharper disable CompareOfFloatsByEqualityOperator
return _m13 != 0 || _m23 != 0 || _m33 != 1;
// ReSharper restore CompareOfFloatsByEqualityOperator
}
/// <summary>
/// Returns a String representing this matrix instance.
/// </summary>
/// <returns>The string representation.</returns>
public override string ToString()
{
CultureInfo ci = CultureInfo.CurrentCulture;
string msg;
double[] values;
if (ContainsPerspective())
{
msg = "{{ {{M11:{0} M12:{1} M13:{2}}} {{M21:{3} M22:{4} M23:{5}}} {{M31:{6} M32:{7} M33:{8}}} }}";
values = new[] { M11, M12, M13, M21, M22, M23, M31, M32, M33 };
}
else
{
msg = "{{ {{M11:{0} M12:{1}}} {{M21:{2} M22:{3}}} {{M31:{4} M32:{5}}} }}";
values = new[] { M11, M12, M21, M22, M31, M32 };
}
return string.Format(
ci,
msg,
values.Select((v) => v.ToString(ci)).ToArray());
}
/// <summary>
/// Attempts to invert the Matrix.
/// </summary>
/// <returns>The inverted matrix or <see langword="null"/> when matrix is not invertible.</returns>
public bool TryInvert(out Matrix inverted)
{
double d = GetDeterminant();
if (MathUtilities.IsZero(d))
{
inverted = default;
return false;
}
var invdet = 1 / d;
inverted = new Matrix(
(_m22 * _m33 - _m32 * _m23) * invdet,
(_m13 * _m32 - _m12 * _m33) * invdet,
(_m12 * _m23 - _m13 * _m22) * invdet,
(_m23 * _m31 - _m21 * _m33) * invdet,
(_m11 * _m33 - _m13 * _m31) * invdet,
(_m21 * _m13 - _m11 * _m23) * invdet,
(_m21 * _m32 - _m31 * _m22) * invdet,
(_m31 * _m12 - _m11 * _m32) * invdet,
(_m11 * _m22 - _m21 * _m12) * invdet
);
return true;
}
/// <summary>
/// Inverts the Matrix.
/// </summary>
/// <exception cref="InvalidOperationException">Matrix is not invertible.</exception>
/// <returns>The inverted matrix.</returns>
public Matrix Invert()
{
if (!TryInvert(out var inverted))
{
throw new InvalidOperationException("Transform is not invertible.");
}
return inverted;
}
/// <summary>
/// Parses a <see cref="Matrix"/> string.
/// </summary>
/// <param name="s">Six or nine comma-delimited double values (m11, m12, m21, m22, offsetX, offsetY[, perspX, perspY, perspZ]) that describe the new <see cref="Matrix"/></param>
/// <returns>The <see cref="Matrix"/>.</returns>
public static Matrix Parse(string s)
{
// initialize to satisfy compiler - only used when retrieved from string.
double v8 = 0;
double v9 = 0;
using (var tokenizer = new StringTokenizer(s, CultureInfo.InvariantCulture, exceptionMessage: "Invalid Matrix."))
{
var v1 = tokenizer.ReadDouble();
var v2 = tokenizer.ReadDouble();
var v3 = tokenizer.ReadDouble();
var v4 = tokenizer.ReadDouble();
var v5 = tokenizer.ReadDouble();
var v6 = tokenizer.ReadDouble();
var persp = tokenizer.TryReadDouble(out var v7);
persp = persp && tokenizer.TryReadDouble(out v8);
persp = persp && tokenizer.TryReadDouble(out v9);
if (persp)
return new Matrix(v1, v2, v7, v3, v4, v8, v5, v6, v9);
else
return new Matrix(v1, v2, v3, v4, v5, v6);
}
}
/// <summary>
/// Decomposes given matrix into transform operations.
/// </summary>
/// <param name="matrix">Matrix to decompose.</param>
/// <param name="decomposed">Decomposed matrix.</param>
/// <returns>The status of the operation.</returns>
public static bool TryDecomposeTransform(Matrix matrix, out Decomposed decomposed)
{
decomposed = default;
var determinant = matrix.GetDeterminant();
if (MathUtilities.IsZero(determinant) || matrix.ContainsPerspective())
{
return false;
}
var m11 = matrix.M11;
var m21 = matrix.M21;
var m12 = matrix.M12;
var m22 = matrix.M22;
// Translation.
decomposed.Translate = new Vector(matrix.M31, matrix.M32);
// Scale sign.
var scaleX = 1d;
var scaleY = 1d;
if (determinant < 0)
{
if (m11 < m22)
{
scaleX *= -1d;
}
else
{
scaleY *= -1d;
}
}
// X Scale.
scaleX *= Math.Sqrt(m11 * m11 + m12 * m12);
m11 /= scaleX;
m12 /= scaleX;
// XY Shear.
double scaledShear = m11 * m21 + m12 * m22;
m21 -= m11 * scaledShear;
m22 -= m12 * scaledShear;
// Y Scale.
scaleY *= Math.Sqrt(m21 * m21 + m22 * m22);
decomposed.Scale = new Vector(scaleX, scaleY);
decomposed.Skew = new Vector(scaledShear / scaleY, 0d);
decomposed.Angle = Math.Atan2(m12, m11);
return true;
}
public record struct Decomposed
{
public Vector Translate;
public Vector Scale;
public Vector Skew;
public double Angle;
}
}
}