Browse Source

Merge pull request #1201 from SixLabors/js/fast-hash

Add Hardware Accelerated Checksums
pull/1203/head
James Jackson-South 6 years ago
committed by GitHub
parent
commit
4002a9759d
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 14
      src/ImageSharp/Formats/Png/PngDecoderCore.cs
  2. 13
      src/ImageSharp/Formats/Png/PngEncoderCore.cs
  3. 326
      src/ImageSharp/Formats/Png/Zlib/Adler32.cs
  4. 70
      src/ImageSharp/Formats/Png/Zlib/Crc32.Lut.cs
  5. 295
      src/ImageSharp/Formats/Png/Zlib/Crc32.cs
  6. 43
      src/ImageSharp/Formats/Png/Zlib/IChecksum.cs
  7. 10
      src/ImageSharp/Formats/Png/Zlib/README.md
  8. 8
      src/ImageSharp/Formats/Png/Zlib/ZlibDeflateStream.cs
  9. BIN
      src/ImageSharp/Formats/Png/Zlib/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
  10. 1
      tests/Directory.Build.targets
  11. 72
      tests/ImageSharp.Benchmarks/General/Adler32Benchmark.cs
  12. 72
      tests/ImageSharp.Benchmarks/General/Crc32Benchmark.cs
  13. 1
      tests/ImageSharp.Benchmarks/ImageSharp.Benchmarks.csproj
  14. 41
      tests/ImageSharp.Tests/Formats/Png/Adler32Tests.cs
  15. 41
      tests/ImageSharp.Tests/Formats/Png/Crc32Tests.cs
  16. 18
      tests/ImageSharp.Tests/Formats/Png/PngDecoderTests.Chunks.cs
  17. 1
      tests/ImageSharp.Tests/ImageSharp.Tests.csproj

14
src/ImageSharp/Formats/Png/PngDecoderCore.cs

@ -30,11 +30,6 @@ namespace SixLabors.ImageSharp.Formats.Png
/// </summary>
private readonly byte[] buffer = new byte[4];
/// <summary>
/// Reusable CRC for validating chunks.
/// </summary>
private readonly Crc32 crc = new Crc32();
/// <summary>
/// The global configuration.
/// </summary>
@ -1159,18 +1154,17 @@ namespace SixLabors.ImageSharp.Formats.Png
/// <param name="chunk">The <see cref="PngChunk"/>.</param>
private void ValidateChunk(in PngChunk chunk)
{
uint crc = this.ReadChunkCrc();
uint inputCrc = this.ReadChunkCrc();
if (chunk.IsCritical)
{
Span<byte> chunkType = stackalloc byte[4];
BinaryPrimitives.WriteUInt32BigEndian(chunkType, (uint)chunk.Type);
this.crc.Reset();
this.crc.Update(chunkType);
this.crc.Update(chunk.Data.GetSpan());
uint validCrc = Crc32.Calculate(chunkType);
validCrc = Crc32.Calculate(validCrc, chunk.Data.GetSpan());
if (this.crc.Value != crc)
if (validCrc != inputCrc)
{
string chunkTypeName = Encoding.ASCII.GetString(chunkType);
PngThrowHelper.ThrowInvalidChunkCrc(chunkTypeName);

13
src/ImageSharp/Formats/Png/PngEncoderCore.cs

@ -47,11 +47,6 @@ namespace SixLabors.ImageSharp.Formats.Png
/// </summary>
private readonly byte[] chunkDataBuffer = new byte[16];
/// <summary>
/// Reusable CRC for validating chunks.
/// </summary>
private readonly Crc32 crc = new Crc32();
/// <summary>
/// The encoder options
/// </summary>
@ -1120,18 +1115,16 @@ namespace SixLabors.ImageSharp.Formats.Png
stream.Write(this.buffer, 0, 8);
this.crc.Reset();
this.crc.Update(this.buffer.AsSpan(4, 4)); // Write the type buffer
uint crc = Crc32.Calculate(this.buffer.AsSpan(4, 4)); // Write the type buffer
if (data != null && length > 0)
{
stream.Write(data, offset, length);
this.crc.Update(data.AsSpan(offset, length));
crc = Crc32.Calculate(crc, data.AsSpan(offset, length));
}
BinaryPrimitives.WriteUInt32BigEndian(this.buffer, (uint)this.crc.Value);
BinaryPrimitives.WriteUInt32BigEndian(this.buffer, crc);
stream.Write(this.buffer, 0, 4); // write the crc
}

326
src/ImageSharp/Formats/Png/Zlib/Adler32.cs

@ -3,146 +3,258 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
#if SUPPORTS_RUNTIME_INTRINSICS
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
#endif
#pragma warning disable IDE0007 // Use implicit type
namespace SixLabors.ImageSharp.Formats.Png.Zlib
{
/// <summary>
/// Computes Adler32 checksum for a stream of data. An Adler32
/// checksum is not as reliable as a CRC32 checksum, but a lot faster to
/// compute.
/// Calculates the 32 bit Adler checksum of a given buffer according to
/// RFC 1950. ZLIB Compressed Data Format Specification version 3.3)
/// </summary>
/// <remarks>
/// The specification for Adler32 may be found in RFC 1950.
/// ZLIB Compressed Data Format Specification version 3.3)
///
///
/// From that document:
///
/// "ADLER32 (Adler-32 checksum)
/// This contains a checksum value of the uncompressed data
/// (excluding any dictionary data) computed according to Adler-32
/// algorithm. This algorithm is a 32-bit extension and improvement
/// of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
/// standard.
///
/// Adler-32 is composed of two sums accumulated per byte: s1 is
/// the sum of all bytes, s2 is the sum of all s1 values. Both sums
/// are done modulo 65521. s1 is initialized to 1, s2 to zero. The
/// Adler-32 checksum is stored as s2*65536 + s1 in most-
/// significant-byte first (network) order."
///
/// "8.2. The Adler-32 algorithm
///
/// The Adler-32 algorithm is much faster than the CRC32 algorithm yet
/// still provides an extremely low probability of undetected errors.
///
/// The modulo on unsigned long accumulators can be delayed for 5552
/// bytes, so the modulo operation time is negligible. If the bytes
/// are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
/// and order sensitive, unlike the first sum, which is just a
/// checksum. That 65521 is prime is important to avoid a possible
/// large class of two-byte errors that leave the check unchanged.
/// (The Fletcher checksum uses 255, which is not prime and which also
/// makes the Fletcher check insensitive to single byte changes 0 -
/// 255.)
///
/// The sum s1 is initialized to 1 instead of zero to make the length
/// of the sequence part of s2, so that the length does not have to be
/// checked separately. (Any sequence of zeroes has a Fletcher
/// checksum of zero.)"
/// </remarks>
/// <see cref="ZlibInflateStream"/>
/// <see cref="ZlibDeflateStream"/>
internal sealed class Adler32 : IChecksum
internal static class Adler32
{
/// <summary>
/// largest prime smaller than 65536
/// The default initial seed value of a Adler32 checksum calculation.
/// </summary>
private const uint Base = 65521;
public const uint SeedValue = 1U;
/// <summary>
/// The checksum calculated to far.
/// </summary>
private uint checksum;
// Largest prime smaller than 65536
private const uint BASE = 65521;
/// <summary>
/// Initializes a new instance of the <see cref="Adler32"/> class.
/// The checksum starts off with a value of 1.
/// </summary>
public Adler32()
{
this.Reset();
}
// NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
private const uint NMAX = 5552;
/// <inheritdoc/>
public long Value
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => this.checksum;
}
#if SUPPORTS_RUNTIME_INTRINSICS
private const int MinBufferSize = 64;
/// <inheritdoc/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Reset()
// The C# compiler emits this as a compile-time constant embedded in the PE file.
private static ReadOnlySpan<byte> Tap1Tap2 => new byte[]
{
this.checksum = 1;
}
32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, // tap1
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 // tap2
};
#endif
/// <summary>
/// Calculates the Adler32 checksum with the bytes taken from the span.
/// </summary>
/// <param name="buffer">The readonly span of bytes.</param>
/// <returns>The <see cref="uint"/>.</returns>
[MethodImpl(InliningOptions.ShortMethod)]
public static uint Calculate(ReadOnlySpan<byte> buffer)
=> Calculate(SeedValue, buffer);
/// <summary>
/// Updates the checksum with a byte value.
/// Calculates the Adler32 checksum with the bytes taken from the span and seed.
/// </summary>
/// <param name="value">
/// The data value to add. The high byte of the int is ignored.
/// </param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(int value)
/// <param name="adler">The input Adler32 value.</param>
/// <param name="buffer">The readonly span of bytes.</param>
/// <returns>The <see cref="uint"/>.</returns>
[MethodImpl(InliningOptions.HotPath | InliningOptions.ShortMethod)]
public static uint Calculate(uint adler, ReadOnlySpan<byte> buffer)
{
// We could make a length 1 byte array and call update again, but I
// would rather not have that overhead
uint s1 = this.checksum & 0xFFFF;
uint s2 = this.checksum >> 16;
if (buffer.IsEmpty)
{
return SeedValue;
}
s1 = (s1 + ((uint)value & 0xFF)) % Base;
s2 = (s1 + s2) % Base;
#if SUPPORTS_RUNTIME_INTRINSICS
if (Sse3.IsSupported && buffer.Length >= MinBufferSize)
{
return CalculateSse(adler, buffer);
}
this.checksum = (s2 << 16) + s1;
return CalculateScalar(adler, buffer);
#else
return CalculateScalar(adler, buffer);
#endif
}
/// <inheritdoc/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(ReadOnlySpan<byte> data)
// Based on https://github.com/chromium/chromium/blob/master/third_party/zlib/adler32_simd.c
#if SUPPORTS_RUNTIME_INTRINSICS
[MethodImpl(InliningOptions.HotPath | InliningOptions.ShortMethod)]
private static unsafe uint CalculateSse(uint adler, ReadOnlySpan<byte> buffer)
{
ref byte dataRef = ref MemoryMarshal.GetReference(data);
uint s1 = this.checksum & 0xFFFF;
uint s2 = this.checksum >> 16;
uint s1 = adler & 0xFFFF;
uint s2 = (adler >> 16) & 0xFFFF;
int count = data.Length;
int offset = 0;
// Process the data in blocks.
const int BLOCK_SIZE = 1 << 5;
while (count > 0)
uint length = (uint)buffer.Length;
uint blocks = length / BLOCK_SIZE;
length -= blocks * BLOCK_SIZE;
int index = 0;
fixed (byte* bufferPtr = buffer)
fixed (byte* tapPtr = Tap1Tap2)
{
// We can defer the modulo operation:
// s1 maximally grows from 65521 to 65521 + 255 * 3800
// s2 maximally grows by 3800 * median(s1) = 2090079800 < 2^31
int n = 3800;
if (n > count)
index += (int)blocks * BLOCK_SIZE;
var localBufferPtr = bufferPtr;
// _mm_setr_epi8 on x86
Vector128<sbyte> tap1 = Sse2.LoadVector128((sbyte*)tapPtr);
Vector128<sbyte> tap2 = Sse2.LoadVector128((sbyte*)(tapPtr + 0x10));
Vector128<byte> zero = Vector128<byte>.Zero;
var ones = Vector128.Create((short)1);
while (blocks > 0)
{
n = count;
uint n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if (n > blocks)
{
n = blocks;
}
blocks -= n;
// Process n blocks of data. At most NMAX data bytes can be
// processed before s2 must be reduced modulo BASE.
Vector128<uint> v_ps = Vector128.CreateScalar(s1 * n);
Vector128<uint> v_s2 = Vector128.CreateScalar(s2);
Vector128<uint> v_s1 = Vector128<uint>.Zero;
do
{
// Load 32 input bytes.
Vector128<byte> bytes1 = Sse3.LoadDquVector128(localBufferPtr);
Vector128<byte> bytes2 = Sse3.LoadDquVector128(localBufferPtr + 0x10);
// Add previous block byte sum to v_ps.
v_ps = Sse2.Add(v_ps, v_s1);
// Horizontally add the bytes for s1, multiply-adds the
// bytes by [ 32, 31, 30, ... ] for s2.
v_s1 = Sse2.Add(v_s1, Sse2.SumAbsoluteDifferences(bytes1, zero).AsUInt32());
Vector128<short> mad1 = Ssse3.MultiplyAddAdjacent(bytes1, tap1);
v_s2 = Sse2.Add(v_s2, Sse2.MultiplyAddAdjacent(mad1, ones).AsUInt32());
v_s1 = Sse2.Add(v_s1, Sse2.SumAbsoluteDifferences(bytes2, zero).AsUInt32());
Vector128<short> mad2 = Ssse3.MultiplyAddAdjacent(bytes2, tap2);
v_s2 = Sse2.Add(v_s2, Sse2.MultiplyAddAdjacent(mad2, ones).AsUInt32());
localBufferPtr += BLOCK_SIZE;
}
while (--n > 0);
v_s2 = Sse2.Add(v_s2, Sse2.ShiftLeftLogical(v_ps, 5));
// Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
const byte S2301 = 0b1011_0001; // A B C D -> B A D C
const byte S1032 = 0b0100_1110; // A B C D -> C D A B
v_s1 = Sse2.Add(v_s1, Sse2.Shuffle(v_s1, S1032));
s1 += v_s1.ToScalar();
v_s2 = Sse2.Add(v_s2, Sse2.Shuffle(v_s2, S2301));
v_s2 = Sse2.Add(v_s2, Sse2.Shuffle(v_s2, S1032));
s2 = v_s2.ToScalar();
// Reduce.
s1 %= BASE;
s2 %= BASE;
}
count -= n;
while (--n >= 0)
if (length > 0)
{
s1 += Unsafe.Add(ref dataRef, offset++);
s2 += s1;
if (length >= 16)
{
s2 += s1 += localBufferPtr[0];
s2 += s1 += localBufferPtr[1];
s2 += s1 += localBufferPtr[2];
s2 += s1 += localBufferPtr[3];
s2 += s1 += localBufferPtr[4];
s2 += s1 += localBufferPtr[5];
s2 += s1 += localBufferPtr[6];
s2 += s1 += localBufferPtr[7];
s2 += s1 += localBufferPtr[8];
s2 += s1 += localBufferPtr[9];
s2 += s1 += localBufferPtr[10];
s2 += s1 += localBufferPtr[11];
s2 += s1 += localBufferPtr[12];
s2 += s1 += localBufferPtr[13];
s2 += s1 += localBufferPtr[14];
s2 += s1 += localBufferPtr[15];
localBufferPtr += 16;
length -= 16;
}
while (length-- > 0)
{
s2 += s1 += *localBufferPtr++;
}
if (s1 >= BASE)
{
s1 -= BASE;
}
s2 %= BASE;
}
s1 %= Base;
s2 %= Base;
return s1 | (s2 << 16);
}
}
#endif
this.checksum = (s2 << 16) | s1;
[MethodImpl(InliningOptions.HotPath | InliningOptions.ShortMethod)]
private static unsafe uint CalculateScalar(uint adler, ReadOnlySpan<byte> buffer)
{
uint s1 = adler & 0xFFFF;
uint s2 = (adler >> 16) & 0xFFFF;
uint k;
fixed (byte* bufferPtr = buffer)
{
var localBufferPtr = bufferPtr;
uint length = (uint)buffer.Length;
while (length > 0)
{
k = length < NMAX ? length : NMAX;
length -= k;
while (k >= 16)
{
s2 += s1 += localBufferPtr[0];
s2 += s1 += localBufferPtr[1];
s2 += s1 += localBufferPtr[2];
s2 += s1 += localBufferPtr[3];
s2 += s1 += localBufferPtr[4];
s2 += s1 += localBufferPtr[5];
s2 += s1 += localBufferPtr[6];
s2 += s1 += localBufferPtr[7];
s2 += s1 += localBufferPtr[8];
s2 += s1 += localBufferPtr[9];
s2 += s1 += localBufferPtr[10];
s2 += s1 += localBufferPtr[11];
s2 += s1 += localBufferPtr[12];
s2 += s1 += localBufferPtr[13];
s2 += s1 += localBufferPtr[14];
s2 += s1 += localBufferPtr[15];
localBufferPtr += 16;
k -= 16;
}
while (k-- > 0)
{
s2 += s1 += *localBufferPtr++;
}
s1 %= BASE;
s2 %= BASE;
}
return (s2 << 16) | s1;
}
}
}
}

70
src/ImageSharp/Formats/Png/Zlib/Crc32.Lut.cs

@ -0,0 +1,70 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
namespace SixLabors.ImageSharp.Formats.Png.Zlib
{
/// <content>
/// Contains precalulated tables for scalar calculations.
/// </content>
internal static partial class Crc32
{
/// <summary>
/// The table of all possible eight bit values for fast scalar lookup.
/// </summary>
private static readonly uint[] CrcTable =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419,
0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4,
0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07,
0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856,
0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3,
0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A,
0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599,
0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190,
0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F,
0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E,
0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3,
0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A,
0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5,
0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010,
0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17,
0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6,
0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344,
0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A,
0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1,
0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,
0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE,
0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31,
0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C,
0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B,
0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1,
0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278,
0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7,
0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66,
0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605,
0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8,
0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
0x2D02EF8D
};
}
}

295
src/ImageSharp/Formats/Png/Zlib/Crc32.cs

@ -4,151 +4,212 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
#if SUPPORTS_RUNTIME_INTRINSICS
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
#endif
namespace SixLabors.ImageSharp.Formats.Png.Zlib
{
/// <summary>
/// Generate a table for a byte-wise 32-bit CRC calculation on the polynomial:
/// x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
/// Calculates the 32 bit Cyclic Redundancy Check (CRC) checksum of a given buffer
/// according to the IEEE 802.3 specification.
/// </summary>
/// <remarks>
/// <para>
/// Polynomials over GF(2) are represented in binary, one bit per coefficient,
/// with the lowest powers in the most significant bit. Then adding polynomials
/// is just exclusive-or, and multiplying a polynomial by x is a right shift by
/// one. If we call the above polynomial p, and represent a byte as the
/// polynomial q, also with the lowest power in the most significant bit (so the
/// byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
/// where a mod b means the remainder after dividing a by b.
/// </para>
/// <para>
/// This calculation is done using the shift-register method of multiplying and
/// taking the remainder. The register is initialized to zero, and for each
/// incoming bit, x^32 is added mod p to the register if the bit is a one (where
/// x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
/// x (which is shifting right by one and adding x^32 mod p if the bit shifted
/// out is a one). We start with the highest power (least significant bit) of
/// q and repeat for all eight bits of q.
/// </para>
/// <para>
/// The table is simply the CRC of all possible eight bit values. This is all
/// the information needed to generate CRC's on data a byte at a time for all
/// combinations of CRC register values and incoming bytes.
/// </para>
/// </remarks>
internal sealed class Crc32 : IChecksum
internal static partial class Crc32
{
/// <summary>
/// The cycle redundancy check seed
/// The default initial seed value of a Crc32 checksum calculation.
/// </summary>
private const uint CrcSeed = 0xFFFFFFFF;
public const uint SeedValue = 0U;
/// <summary>
/// The table of all possible eight bit values for fast lookup.
/// </summary>
private static readonly uint[] CrcTable =
#if SUPPORTS_RUNTIME_INTRINSICS
private const int MinBufferSize = 64;
private const int ChunksizeMask = 15;
// Definitions of the bit-reflected domain constants k1, k2, k3, etc and
// the CRC32+Barrett polynomials given at the end of the paper.
private static readonly ulong[] K05Poly =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419,
0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4,
0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07,
0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856,
0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3,
0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A,
0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599,
0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190,
0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F,
0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E,
0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3,
0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A,
0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5,
0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010,
0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17,
0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6,
0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344,
0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A,
0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1,
0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,
0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE,
0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31,
0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C,
0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B,
0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1,
0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278,
0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7,
0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66,
0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605,
0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8,
0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
0x2D02EF8D
0x0154442bd4, 0x01c6e41596, // k1, k2
0x01751997d0, 0x00ccaa009e, // k3, k4
0x0163cd6124, 0x0000000000, // k5, k0
0x01db710641, 0x01f7011641 // polynomial
};
#endif
/// <summary>
/// The data checksum so far.
/// Calculates the CRC checksum with the bytes taken from the span.
/// </summary>
private uint crc;
/// <param name="buffer">The readonly span of bytes.</param>
/// <returns>The <see cref="uint"/>.</returns>
[MethodImpl(InliningOptions.ShortMethod)]
public static uint Calculate(ReadOnlySpan<byte> buffer)
=> Calculate(SeedValue, buffer);
/// <inheritdoc/>
public long Value
/// <summary>
/// Calculates the CRC checksum with the bytes taken from the span and seed.
/// </summary>
/// <param name="crc">The input CRC value.</param>
/// <param name="buffer">The readonly span of bytes.</param>
/// <returns>The <see cref="uint"/>.</returns>
[MethodImpl(InliningOptions.ShortMethod)]
public static uint Calculate(uint crc, ReadOnlySpan<byte> buffer)
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => this.crc;
if (buffer.IsEmpty)
{
return SeedValue;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
set => this.crc = (uint)value;
#if SUPPORTS_RUNTIME_INTRINSICS
if (Sse41.IsSupported && Pclmulqdq.IsSupported && buffer.Length >= MinBufferSize)
{
return ~CalculateSse(~crc, buffer);
}
else
{
return ~CalculateScalar(~crc, buffer);
}
#else
return ~CalculateScalar(~crc, buffer);
#endif
}
/// <inheritdoc/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Reset()
#if SUPPORTS_RUNTIME_INTRINSICS
// Based on https://github.com/chromium/chromium/blob/master/third_party/zlib/crc32_simd.c
[MethodImpl(InliningOptions.HotPath | InliningOptions.ShortMethod)]
private static unsafe uint CalculateSse(uint crc, ReadOnlySpan<byte> buffer)
{
this.crc = 0;
}
int chunksize = buffer.Length & ~ChunksizeMask;
int length = chunksize;
/// <summary>
/// Updates the checksum with the given value.
/// </summary>
/// <param name="value">The byte is taken as the lower 8 bits of value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(int value)
{
this.crc ^= CrcSeed;
this.crc = CrcTable[(this.crc ^ value) & 0xFF] ^ (this.crc >> 8);
this.crc ^= CrcSeed;
fixed (byte* bufferPtr = buffer)
fixed (ulong* k05PolyPtr = K05Poly)
{
byte* localBufferPtr = bufferPtr;
ulong* localK05PolyPtr = k05PolyPtr;
// There's at least one block of 64.
Vector128<ulong> x1 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x00));
Vector128<ulong> x2 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x10));
Vector128<ulong> x3 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x20));
Vector128<ulong> x4 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x30));
Vector128<ulong> x5;
x1 = Sse2.Xor(x1, Sse2.ConvertScalarToVector128UInt32(crc).AsUInt64());
// k1, k2
Vector128<ulong> x0 = Sse2.LoadVector128(localK05PolyPtr + 0x0);
localBufferPtr += 64;
length -= 64;
// Parallel fold blocks of 64, if any.
while (length >= 64)
{
x5 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x00);
Vector128<ulong> x6 = Pclmulqdq.CarrylessMultiply(x2, x0, 0x00);
Vector128<ulong> x7 = Pclmulqdq.CarrylessMultiply(x3, x0, 0x00);
Vector128<ulong> x8 = Pclmulqdq.CarrylessMultiply(x4, x0, 0x00);
x1 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x11);
x2 = Pclmulqdq.CarrylessMultiply(x2, x0, 0x11);
x3 = Pclmulqdq.CarrylessMultiply(x3, x0, 0x11);
x4 = Pclmulqdq.CarrylessMultiply(x4, x0, 0x11);
Vector128<ulong> y5 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x00));
Vector128<ulong> y6 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x10));
Vector128<ulong> y7 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x20));
Vector128<ulong> y8 = Sse2.LoadVector128((ulong*)(localBufferPtr + 0x30));
x1 = Sse2.Xor(x1, x5);
x2 = Sse2.Xor(x2, x6);
x3 = Sse2.Xor(x3, x7);
x4 = Sse2.Xor(x4, x8);
x1 = Sse2.Xor(x1, y5);
x2 = Sse2.Xor(x2, y6);
x3 = Sse2.Xor(x3, y7);
x4 = Sse2.Xor(x4, y8);
localBufferPtr += 64;
length -= 64;
}
// Fold into 128-bits.
// k3, k4
x0 = Sse2.LoadVector128(k05PolyPtr + 0x2);
x5 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x00);
x1 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x11);
x1 = Sse2.Xor(x1, x2);
x1 = Sse2.Xor(x1, x5);
x5 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x00);
x1 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x11);
x1 = Sse2.Xor(x1, x3);
x1 = Sse2.Xor(x1, x5);
x5 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x00);
x1 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x11);
x1 = Sse2.Xor(x1, x4);
x1 = Sse2.Xor(x1, x5);
// Single fold blocks of 16, if any.
while (length >= 16)
{
x2 = Sse2.LoadVector128((ulong*)localBufferPtr);
x5 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x00);
x1 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x11);
x1 = Sse2.Xor(x1, x2);
x1 = Sse2.Xor(x1, x5);
localBufferPtr += 16;
length -= 16;
}
// Fold 128 - bits to 64 - bits.
x2 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x10);
x3 = Vector128.Create(~0, 0, ~0, 0).AsUInt64(); // _mm_setr_epi32 on x86
x1 = Sse2.ShiftRightLogical128BitLane(x1, 8);
x1 = Sse2.Xor(x1, x2);
// k5, k0
x0 = Sse2.LoadScalarVector128(localK05PolyPtr + 0x4);
x2 = Sse2.ShiftRightLogical128BitLane(x1, 4);
x1 = Sse2.And(x1, x3);
x1 = Pclmulqdq.CarrylessMultiply(x1, x0, 0x00);
x1 = Sse2.Xor(x1, x2);
// Barret reduce to 32-bits.
// polynomial
x0 = Sse2.LoadVector128(localK05PolyPtr + 0x6);
x2 = Sse2.And(x1, x3);
x2 = Pclmulqdq.CarrylessMultiply(x2, x0, 0x10);
x2 = Sse2.And(x2, x3);
x2 = Pclmulqdq.CarrylessMultiply(x2, x0, 0x00);
x1 = Sse2.Xor(x1, x2);
crc = (uint)Sse41.Extract(x1.AsInt32(), 1);
return buffer.Length - chunksize == 0 ? crc : CalculateScalar(crc, buffer.Slice(chunksize));
}
}
#endif
/// <inheritdoc/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(ReadOnlySpan<byte> data)
[MethodImpl(InliningOptions.HotPath | InliningOptions.ShortMethod)]
private static uint CalculateScalar(uint crc, ReadOnlySpan<byte> buffer)
{
this.crc ^= CrcSeed;
ref uint crcTableRef = ref MemoryMarshal.GetReference(CrcTable.AsSpan());
for (int i = 0; i < data.Length; i++)
ref byte bufferRef = ref MemoryMarshal.GetReference(buffer);
for (int i = 0; i < buffer.Length; i++)
{
this.crc = Unsafe.Add(ref crcTableRef, (int)((this.crc ^ data[i]) & 0xFF)) ^ (this.crc >> 8);
crc = Unsafe.Add(ref crcTableRef, (int)((crc ^ Unsafe.Add(ref bufferRef, i)) & 0xFF)) ^ (crc >> 8);
}
this.crc ^= CrcSeed;
return crc;
}
}
}

43
src/ImageSharp/Formats/Png/Zlib/IChecksum.cs

@ -1,43 +0,0 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
using System;
namespace SixLabors.ImageSharp.Formats.Png.Zlib
{
/// <summary>
/// Interface to compute a data checksum used by checked input/output streams.
/// A data checksum can be updated by one byte or with a byte array. After each
/// update the value of the current checksum can be returned by calling
/// <code>Value</code>. The complete checksum object can also be reset
/// so it can be used again with new data.
/// </summary>
internal interface IChecksum
{
/// <summary>
/// Gets the data checksum computed so far.
/// </summary>
long Value { get; }
/// <summary>
/// Resets the data checksum as if no update was ever called.
/// </summary>
void Reset();
/// <summary>
/// Adds one byte to the data checksum.
/// </summary>
/// <param name = "value">
/// The data value to add. The high byte of the integer is ignored.
/// </param>
void Update(int value);
/// <summary>
/// Updates the data checksum with the bytes taken from the span.
/// </summary>
/// <param name="data">
/// buffer an array of bytes
/// </param>
void Update(ReadOnlySpan<byte> data);
}
}

10
src/ImageSharp/Formats/Png/Zlib/README.md

@ -1,5 +1,11 @@
Deflatestream implementation adapted from
DeflateStream implementation adapted from
https://github.com/icsharpcode/SharpZipLib
LIcensed under MIT
Licensed under MIT
Crc32 and Adler32 SIMD implementation adapted from
https://github.com/chromium/chromium
Licensed under BSD 3-Clause "New" or "Revised" License

8
src/ImageSharp/Formats/Png/Zlib/ZlibDeflateStream.cs

@ -3,6 +3,7 @@
using System;
using System.IO;
using System.Runtime.CompilerServices;
using SixLabors.ImageSharp.Memory;
namespace SixLabors.ImageSharp.Formats.Png.Zlib
@ -20,7 +21,7 @@ namespace SixLabors.ImageSharp.Formats.Png.Zlib
/// <summary>
/// Computes the checksum for the data stream.
/// </summary>
private readonly Adler32 adler32 = new Adler32();
private uint adler = Adler32.SeedValue;
/// <summary>
/// A value indicating whether this instance of the given entity has been disposed.
@ -133,10 +134,11 @@ namespace SixLabors.ImageSharp.Formats.Png.Zlib
public override void SetLength(long value) => throw new NotSupportedException();
/// <inheritdoc/>
[MethodImpl(InliningOptions.ShortMethod)]
public override void Write(byte[] buffer, int offset, int count)
{
this.deflateStream.Write(buffer, offset, count);
this.adler32.Update(buffer.AsSpan(offset, count));
this.adler = Adler32.Calculate(this.adler, buffer.AsSpan(offset, count));
}
/// <inheritdoc/>
@ -153,7 +155,7 @@ namespace SixLabors.ImageSharp.Formats.Png.Zlib
this.deflateStream.Dispose();
// Add the crc
uint crc = (uint)this.adler32.Value;
uint crc = this.adler;
this.rawStream.WriteByte((byte)((crc >> 24) & 0xFF));
this.rawStream.WriteByte((byte)((crc >> 16) & 0xFF));
this.rawStream.WriteByte((byte)((crc >> 8) & 0xFF));

BIN
src/ImageSharp/Formats/Png/Zlib/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf

Binary file not shown.

1
tests/Directory.Build.targets

@ -34,6 +34,7 @@
<PackageReference Update="Microsoft.NET.Test.Sdk" Version="16.5.0-preview-20200116-01" />
<PackageReference Update="Moq" Version="4.10.0" />
<PackageReference Update="Pfim" Version="0.9.1" />
<PackageReference Update="SharpZipLib" Version="1.2.0" />
<PackageReference Update="System.Drawing.Common" Version="4.7.0" />
<PackageReference Update="xunit" Version="2.4.1" />
<PackageReference Update="xunit.runner.visualstudio" Version="2.4.1" />

72
tests/ImageSharp.Benchmarks/General/Adler32Benchmark.cs

@ -0,0 +1,72 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
using System;
using BenchmarkDotNet.Attributes;
using SixLabors.ImageSharp.Formats.Png.Zlib;
using SharpAdler32 = ICSharpCode.SharpZipLib.Checksum.Adler32;
namespace SixLabors.ImageSharp.Benchmarks.General
{
[Config(typeof(Config.ShortClr))]
public class Adler32Benchmark
{
private byte[] data;
private readonly SharpAdler32 adler = new SharpAdler32();
[Params(1024, 2048, 4096)]
public int Count { get; set; }
[GlobalSetup]
public void SetUp()
{
this.data = new byte[this.Count];
new Random(1).NextBytes(this.data);
}
[Benchmark(Baseline = true)]
public long SharpZipLibCalculate()
{
this.adler.Reset();
this.adler.Update(this.data);
return this.adler.Value;
}
[Benchmark]
public uint SixLaborsCalculate()
{
return Adler32.Calculate(this.data);
}
}
// ########## 17/05/2020 ##########
//
// | Method | Runtime | Count | Mean | Error | StdDev | Ratio | RatioSD | Gen 0 | Gen 1 | Gen 2 | Allocated |
// |--------------------- |-------------- |------ |------------:|------------:|----------:|------:|--------:|------:|------:|------:|----------:|
// | SharpZipLibCalculate | .NET 4.7.2 | 1024 | 793.18 ns | 775.66 ns | 42.516 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET 4.7.2 | 1024 | 384.86 ns | 15.64 ns | 0.857 ns | 0.49 | 0.03 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 2.1 | 1024 | 790.31 ns | 353.34 ns | 19.368 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 2.1 | 1024 | 465.28 ns | 652.41 ns | 35.761 ns | 0.59 | 0.03 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 3.1 | 1024 | 877.25 ns | 97.89 ns | 5.365 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 3.1 | 1024 | 45.60 ns | 13.28 ns | 0.728 ns | 0.05 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET 4.7.2 | 2048 | 1,537.04 ns | 428.44 ns | 23.484 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET 4.7.2 | 2048 | 849.76 ns | 1,066.34 ns | 58.450 ns | 0.55 | 0.04 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 2.1 | 2048 | 1,616.97 ns | 276.70 ns | 15.167 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 2.1 | 2048 | 790.77 ns | 691.71 ns | 37.915 ns | 0.49 | 0.03 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 3.1 | 2048 | 1,735.11 ns | 1,374.22 ns | 75.325 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 3.1 | 2048 | 87.80 ns | 56.84 ns | 3.116 ns | 0.05 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET 4.7.2 | 4096 | 3,054.53 ns | 796.41 ns | 43.654 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET 4.7.2 | 4096 | 1,538.90 ns | 487.02 ns | 26.695 ns | 0.50 | 0.01 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 2.1 | 4096 | 3,223.48 ns | 32.32 ns | 1.771 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 2.1 | 4096 | 1,547.60 ns | 309.72 ns | 16.977 ns | 0.48 | 0.01 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 3.1 | 4096 | 3,672.33 ns | 1,095.81 ns | 60.065 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 3.1 | 4096 | 159.44 ns | 36.31 ns | 1.990 ns | 0.04 | 0.00 | - | - | - | - |
}

72
tests/ImageSharp.Benchmarks/General/Crc32Benchmark.cs

@ -0,0 +1,72 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
using System;
using BenchmarkDotNet.Attributes;
using SixLabors.ImageSharp.Formats.Png.Zlib;
using SharpCrc32 = ICSharpCode.SharpZipLib.Checksum.Crc32;
namespace SixLabors.ImageSharp.Benchmarks.General
{
[Config(typeof(Config.ShortClr))]
public class Crc32Benchmark
{
private byte[] data;
private readonly SharpCrc32 crc = new SharpCrc32();
[Params(1024, 2048, 4096)]
public int Count { get; set; }
[GlobalSetup]
public void SetUp()
{
this.data = new byte[this.Count];
new Random(1).NextBytes(this.data);
}
[Benchmark(Baseline = true)]
public long SharpZipLibCalculate()
{
this.crc.Reset();
this.crc.Update(this.data);
return this.crc.Value;
}
[Benchmark]
public long SixLaborsCalculate()
{
return Crc32.Calculate(this.data);
}
}
// ########## 17/05/2020 ##########
//
// | Method | Runtime | Count | Mean | Error | StdDev | Ratio | RatioSD | Gen 0 | Gen 1 | Gen 2 | Allocated |
// |--------------------- |-------------- |------ |-------------:|-------------:|-----------:|------:|--------:|------:|------:|------:|----------:|
// | SharpZipLibCalculate | .NET 4.7.2 | 1024 | 2,797.77 ns | 278.697 ns | 15.276 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET 4.7.2 | 1024 | 2,275.56 ns | 216.100 ns | 11.845 ns | 0.81 | 0.01 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 2.1 | 1024 | 2,923.43 ns | 2,656.882 ns | 145.633 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 2.1 | 1024 | 2,257.79 ns | 75.081 ns | 4.115 ns | 0.77 | 0.04 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 3.1 | 1024 | 2,764.14 ns | 86.281 ns | 4.729 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 3.1 | 1024 | 49.32 ns | 1.813 ns | 0.099 ns | 0.02 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET 4.7.2 | 2048 | 5,603.71 ns | 427.240 ns | 23.418 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET 4.7.2 | 2048 | 4,525.02 ns | 33.931 ns | 1.860 ns | 0.81 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 2.1 | 2048 | 5,563.32 ns | 49.337 ns | 2.704 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 2.1 | 2048 | 4,519.61 ns | 29.837 ns | 1.635 ns | 0.81 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 3.1 | 2048 | 5,543.37 ns | 518.551 ns | 28.424 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 3.1 | 2048 | 89.07 ns | 3.312 ns | 0.182 ns | 0.02 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET 4.7.2 | 4096 | 11,396.95 ns | 373.450 ns | 20.470 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET 4.7.2 | 4096 | 9,070.35 ns | 271.083 ns | 14.859 ns | 0.80 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 2.1 | 4096 | 11,127.81 ns | 239.177 ns | 13.110 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 2.1 | 4096 | 9,050.46 ns | 230.916 ns | 12.657 ns | 0.81 | 0.00 | - | - | - | - |
// | | | | | | | | | | | | |
// | SharpZipLibCalculate | .NET Core 3.1 | 4096 | 11,098.62 ns | 687.978 ns | 37.710 ns | 1.00 | 0.00 | - | - | - | - |
// | SixLaborsCalculate | .NET Core 3.1 | 4096 | 168.11 ns | 3.633 ns | 0.199 ns | 0.02 | 0.00 | - | - | - | - |
}

1
tests/ImageSharp.Benchmarks/ImageSharp.Benchmarks.csproj

@ -25,6 +25,7 @@
<PackageReference Include="BenchmarkDotNet.Diagnostics.Windows" Condition="'$(OS)' == 'Windows_NT'" />
<PackageReference Include="Colourful" />
<PackageReference Include="Pfim" />
<PackageReference Include="SharpZipLib" />
<PackageReference Include="System.Drawing.Common" />
</ItemGroup>

41
tests/ImageSharp.Tests/Formats/Png/Adler32Tests.cs

@ -0,0 +1,41 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
using System;
using SixLabors.ImageSharp.Formats.Png.Zlib;
using Xunit;
using SharpAdler32 = ICSharpCode.SharpZipLib.Checksum.Adler32;
namespace SixLabors.ImageSharp.Tests.Formats.Png
{
public class Adler32Tests
{
[Theory]
[InlineData(0)]
[InlineData(8)]
[InlineData(215)]
[InlineData(1024)]
[InlineData(1024 + 15)]
[InlineData(2034)]
[InlineData(4096)]
public void MatchesReference(int length)
{
var data = GetBuffer(length);
var adler = new SharpAdler32();
adler.Update(data);
long expected = adler.Value;
long actual = Adler32.Calculate(data);
Assert.Equal(expected, actual);
}
private static byte[] GetBuffer(int length)
{
var data = new byte[length];
new Random(1).NextBytes(data);
return data;
}
}
}

41
tests/ImageSharp.Tests/Formats/Png/Crc32Tests.cs

@ -0,0 +1,41 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
using System;
using SixLabors.ImageSharp.Formats.Png.Zlib;
using Xunit;
using SharpCrc32 = ICSharpCode.SharpZipLib.Checksum.Crc32;
namespace SixLabors.ImageSharp.Tests.Formats.Png
{
public class Crc32Tests
{
[Theory]
[InlineData(0)]
[InlineData(8)]
[InlineData(215)]
[InlineData(1024)]
[InlineData(1024 + 15)]
[InlineData(2034)]
[InlineData(4096)]
public void MatchesReference(int length)
{
var data = GetBuffer(length);
var crc = new SharpCrc32();
crc.Update(data);
long expected = crc.Value;
long actual = Crc32.Calculate(data);
Assert.Equal(expected, actual);
}
private static byte[] GetBuffer(int length)
{
var data = new byte[length];
new Random(1).NextBytes(data);
return data;
}
}
}

18
tests/ImageSharp.Tests/Formats/Png/PngDecoderTests.Chunks.cs

@ -1,6 +1,7 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the GNU Affero General Public License, Version 3.
using System;
using System.Buffers.Binary;
using System.IO;
using System.Text;
@ -16,6 +17,9 @@ namespace SixLabors.ImageSharp.Tests.Formats.Png
{
public partial class PngDecoderTests
{
// Represents ASCII string of "123456789"
private readonly byte[] check = { 49, 50, 51, 52, 53, 54, 55, 56, 57 };
// Contains the png marker, IHDR and pHYs chunks of a 1x1 pixel 32bit png 1 a single black pixel.
private static readonly byte[] Raw1X1PngIhdrAndpHYs =
{
@ -79,20 +83,6 @@ namespace SixLabors.ImageSharp.Tests.Formats.Png
}
}
[Fact]
public void CalculateCrc_Works()
{
// arrange
var data = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 };
var crc = new Crc32();
// act
crc.Update(data);
// assert
Assert.Equal(0x88AA689F, crc.Value);
}
private static string GetChunkTypeName(uint value)
{
var data = new byte[4];

1
tests/ImageSharp.Tests/ImageSharp.Tests.csproj

@ -21,6 +21,7 @@
<PackageReference Include="Magick.NET-Q16-AnyCPU" />
<PackageReference Include="Microsoft.DotNet.RemoteExecutor" />
<PackageReference Include="Moq" />
<PackageReference Include="SharpZipLib" />
<PackageReference Include="System.Drawing.Common" />
</ItemGroup>

Loading…
Cancel
Save