diff --git a/src/ImageSharp/Formats/Jpeg/Port/Components/Component.cs b/src/ImageSharp/Formats/Jpeg/Port/Components/Component.cs
index e5ae70f1f..3b462514c 100644
--- a/src/ImageSharp/Formats/Jpeg/Port/Components/Component.cs
+++ b/src/ImageSharp/Formats/Jpeg/Port/Components/Component.cs
@@ -17,7 +17,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
///
/// Gets or sets the output
///
- public Buffer Output;
+ public Buffer Output;
///
/// Gets or sets the horizontal scaling factor
diff --git a/src/ImageSharp/Formats/Jpeg/Port/Components/IDCT.cs b/src/ImageSharp/Formats/Jpeg/Port/Components/IDCT.cs
new file mode 100644
index 000000000..0e5a97012
--- /dev/null
+++ b/src/ImageSharp/Formats/Jpeg/Port/Components/IDCT.cs
@@ -0,0 +1,222 @@
+namespace ImageSharp.Formats.Jpeg.Port.Components
+{
+ using System;
+ using ImageSharp.Memory;
+
+ ///
+ /// Performa the invers
+ ///
+ internal static class IDCT
+ {
+ private const int DctCos1 = 4017; // cos(pi/16)
+ private const int DctSin1 = 799; // sin(pi/16)
+ private const int DctCos3 = 3406; // cos(3*pi/16)
+ private const int DctSin3 = 2276; // sin(3*pi/16)
+ private const int DctCos6 = 1567; // cos(6*pi/16)
+ private const int DctSin6 = 3784; // sin(6*pi/16)
+ private const int DctSqrt2 = 5793; // sqrt(2)
+ private const int DctSqrt1D2 = 2896; // sqrt(2) / 2
+
+ ///
+ /// A port of Poppler's IDCT method which in turn is taken from:
+ /// Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
+ /// 'Practical Fast 1-D DCT Algorithms with 11 Multiplications',
+ /// IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, 988-991.
+ ///
+ /// The quantization tables
+ /// The fram component
+ /// The block buffer offset
+ /// The computational buffer for holding temp values
+ public static void QuantizeAndInverse(QuantizationTables quantizationTables, ref FrameComponent component, int blockBufferOffset, Buffer computationBuffer)
+ {
+ Span qt = quantizationTables.Tables.GetRowSpan(component.QuantizationIdentifier);
+ Buffer blockData = component.BlockData;
+ int v0, v1, v2, v3, v4, v5, v6, v7;
+ int p0, p1, p2, p3, p4, p5, p6, p7;
+ int t;
+
+ // inverse DCT on rows
+ for (int row = 0; row < 64; row += 8)
+ {
+ // gather block data
+ p0 = blockData[blockBufferOffset + row];
+ p1 = blockData[blockBufferOffset + row + 1];
+ p2 = blockData[blockBufferOffset + row + 2];
+ p3 = blockData[blockBufferOffset + row + 3];
+ p4 = blockData[blockBufferOffset + row + 4];
+ p5 = blockData[blockBufferOffset + row + 5];
+ p6 = blockData[blockBufferOffset + row + 6];
+ p7 = blockData[blockBufferOffset + row + 7];
+
+ // dequant p0
+ p0 *= qt[row];
+
+ // check for all-zero AC coefficients
+ if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) == 0)
+ {
+ t = ((DctSqrt2 * p0) + 512) >> 10;
+ short st = (short)t;
+ computationBuffer[row] = st;
+ computationBuffer[row + 1] = st;
+ computationBuffer[row + 2] = st;
+ computationBuffer[row + 3] = st;
+ computationBuffer[row + 4] = st;
+ computationBuffer[row + 5] = st;
+ computationBuffer[row + 6] = st;
+ computationBuffer[row + 7] = st;
+ continue;
+ }
+
+ // dequant p1 ... p7
+ p1 *= qt[row + 1];
+ p2 *= qt[row + 2];
+ p3 *= qt[row + 3];
+ p4 *= qt[row + 4];
+ p5 *= qt[row + 5];
+ p6 *= qt[row + 6];
+ p7 *= qt[row + 7];
+
+ // stage 4
+ v0 = ((DctSqrt2 * p0) + 128) >> 8;
+ v1 = ((DctSqrt2 * p4) + 128) >> 8;
+ v2 = p2;
+ v3 = p6;
+ v4 = ((DctSqrt1D2 * (p1 - p7)) + 128) >> 8;
+ v7 = ((DctSqrt1D2 * (p1 + p7)) + 128) >> 8;
+ v5 = p3 << 4;
+ v6 = p5 << 4;
+
+ // stage 3
+ v0 = (v0 + v1 + 1) >> 1;
+ v1 = v0 - v1;
+ t = ((v2 * DctSin6) + (v3 * DctCos6) + 128) >> 8;
+ v2 = ((v2 * DctCos6) - (v3 * DctSin6) + 128) >> 8;
+ v3 = t;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = v4 - v6;
+ v7 = (v7 + v5 + 1) >> 1;
+ v5 = v7 - v5;
+
+ // stage 2
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = v0 - v3;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = v1 - v2;
+ t = ((v4 * DctSin3) + (v7 * DctCos3) + 2048) >> 12;
+ v4 = ((v4 * DctCos3) - (v7 * DctSin3) + 2048) >> 12;
+ v7 = t;
+ t = ((v5 * DctSin1) + (v6 * DctCos1) + 2048) >> 12;
+ v5 = ((v5 * DctCos1) - (v6 * DctSin1) + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ computationBuffer[row] = (short)(v0 + v7);
+ computationBuffer[row + 7] = (short)(v0 - v7);
+ computationBuffer[row + 1] = (short)(v1 + v6);
+ computationBuffer[row + 6] = (short)(v1 - v6);
+ computationBuffer[row + 2] = (short)(v2 + v5);
+ computationBuffer[row + 5] = (short)(v2 - v5);
+ computationBuffer[row + 3] = (short)(v3 + v4);
+ computationBuffer[row + 4] = (short)(v3 - v4);
+ }
+
+ // inverse DCT on columns
+ for (int col = 0; col < 8; ++col)
+ {
+ p0 = computationBuffer[col];
+ p1 = computationBuffer[col + 8];
+ p2 = computationBuffer[col + 16];
+ p3 = computationBuffer[col + 24];
+ p4 = computationBuffer[col + 32];
+ p5 = computationBuffer[col + 40];
+ p6 = computationBuffer[col + 48];
+ p7 = computationBuffer[col + 56];
+
+ // check for all-zero AC coefficients
+ if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) == 0)
+ {
+ t = ((DctSqrt2 * p0) + 8192) >> 14;
+
+ // convert to 8 bit
+ t = (t < -2040) ? 0 : (t >= 2024) ? 255 : (t + 2056) >> 4;
+ short st = (short)t;
+
+ blockData[blockBufferOffset + col] = st;
+ blockData[blockBufferOffset + col + 8] = st;
+ blockData[blockBufferOffset + col + 16] = st;
+ blockData[blockBufferOffset + col + 24] = st;
+ blockData[blockBufferOffset + col + 32] = st;
+ blockData[blockBufferOffset + col + 40] = st;
+ blockData[blockBufferOffset + col + 48] = st;
+ blockData[blockBufferOffset + col + 56] = st;
+ continue;
+ }
+
+ // stage 4
+ v0 = ((DctSqrt2 * p0) + 2048) >> 12;
+ v1 = ((DctSqrt2 * p4) + 2048) >> 12;
+ v2 = p2;
+ v3 = p6;
+ v4 = ((DctSqrt1D2 * (p1 - p7)) + 2048) >> 12;
+ v7 = ((DctSqrt1D2 * (p1 + p7)) + 2048) >> 12;
+ v5 = p3;
+ v6 = p5;
+
+ // stage 3
+ // Shift v0 by 128.5 << 5 here, so we don't need to shift p0...p7 when
+ // converting to UInt8 range later.
+ v0 = ((v0 + v1 + 1) >> 1) + 4112;
+ v1 = v0 - v1;
+ t = ((v2 * DctSin6) + (v3 * DctCos6) + 2048) >> 12;
+ v2 = ((v2 * DctCos6) - (v3 * DctSin6) + 2048) >> 12;
+ v3 = t;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = v4 - v6;
+ v7 = (v7 + v5 + 1) >> 1;
+ v5 = v7 - v5;
+
+ // stage 2
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = v0 - v3;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = v1 - v2;
+ t = ((v4 * DctSin3) + (v7 * DctCos3) + 2048) >> 12;
+ v4 = ((v4 * DctCos3) - (v7 * DctSin3) + 2048) >> 12;
+ v7 = t;
+ t = ((v5 * DctSin1) + (v6 * DctCos1) + 2048) >> 12;
+ v5 = ((v5 * DctCos1) - (v6 * DctSin1) + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p0 = v0 + v7;
+ p7 = v0 - v7;
+ p1 = v1 + v6;
+ p6 = v1 - v6;
+ p2 = v2 + v5;
+ p5 = v2 - v5;
+ p3 = v3 + v4;
+ p4 = v3 - v4;
+
+ // convert to 8-bit integers
+ p0 = (p0 < 16) ? 0 : (p0 >= 4080) ? 255 : p0 >> 4;
+ p1 = (p1 < 16) ? 0 : (p1 >= 4080) ? 255 : p1 >> 4;
+ p2 = (p2 < 16) ? 0 : (p2 >= 4080) ? 255 : p2 >> 4;
+ p3 = (p3 < 16) ? 0 : (p3 >= 4080) ? 255 : p3 >> 4;
+ p4 = (p4 < 16) ? 0 : (p4 >= 4080) ? 255 : p4 >> 4;
+ p5 = (p5 < 16) ? 0 : (p5 >= 4080) ? 255 : p5 >> 4;
+ p6 = (p6 < 16) ? 0 : (p6 >= 4080) ? 255 : p6 >> 4;
+ p7 = (p7 < 16) ? 0 : (p7 >= 4080) ? 255 : p7 >> 4;
+
+ // store block data
+ blockData[blockBufferOffset + col] = (short)p0;
+ blockData[blockBufferOffset + col + 8] = (short)p1;
+ blockData[blockBufferOffset + col + 16] = (short)p2;
+ blockData[blockBufferOffset + col + 24] = (short)p3;
+ blockData[blockBufferOffset + col + 32] = (short)p4;
+ blockData[blockBufferOffset + col + 40] = (short)p5;
+ blockData[blockBufferOffset + col + 48] = (short)p6;
+ blockData[blockBufferOffset + col + 56] = (short)p7;
+ }
+ }
+ }
+}
diff --git a/src/ImageSharp/Formats/Jpeg/Port/Components/QuantizationTables.cs b/src/ImageSharp/Formats/Jpeg/Port/Components/QuantizationTables.cs
index fa57a18dd..352dc43f2 100644
--- a/src/ImageSharp/Formats/Jpeg/Port/Components/QuantizationTables.cs
+++ b/src/ImageSharp/Formats/Jpeg/Port/Components/QuantizationTables.cs
@@ -46,7 +46,13 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
///
/// Gets or sets the quantization tables.
///
- public Buffer2D Tables { get; set; }
+ public Buffer2D Tables
+ {
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ get; set;
+ }
+
+ = new Buffer2D(64, 4);
///
public void Dispose()
diff --git a/src/ImageSharp/Formats/Jpeg/Port/Components/ScanDecoder.cs b/src/ImageSharp/Formats/Jpeg/Port/Components/ScanDecoder.cs
index b0c9979d2..59867006f 100644
--- a/src/ImageSharp/Formats/Jpeg/Port/Components/ScanDecoder.cs
+++ b/src/ImageSharp/Formats/Jpeg/Port/Components/ScanDecoder.cs
@@ -41,6 +41,8 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
private int successiveACState;
+ private int successiveACNextValue;
+
///
/// Decodes the spectral scan
///
@@ -91,6 +93,8 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
{
decodeFn = this.DecodeDCSuccessive;
}
+
+ Debug.WriteLine(successivePrev == 0 ? "decodeDCFirst" : "decodeDCSuccessive");
}
else
{
@@ -102,6 +106,8 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
{
decodeFn = this.DecodeACSuccessive;
}
+
+ Debug.WriteLine(successivePrev == 0 ? "decodeACFirst" : "decodeACSuccessive");
}
}
else
@@ -120,16 +126,28 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
mcuExpected = mcusPerLine * frame.McusPerColumn;
}
+ Debug.WriteLine("mcuExpected = " + mcuExpected);
+
// FileMarker fileMarker;
while (mcu < mcuExpected)
{
- // Reset interval stuff
+ // Reset interval
int mcuToRead = resetInterval > 0 ? Math.Min(mcuExpected - mcu, resetInterval) : mcuExpected;
- for (int i = 0; i < componentsLength; i++)
+
+ // TODO: We might just be able to loop here.
+ if (componentsLength == 1)
{
- ref FrameComponent c = ref components[i];
+ ref FrameComponent c = ref components[componentIndex];
c.Pred = 0;
}
+ else
+ {
+ for (int i = 0; i < componentsLength; i++)
+ {
+ ref FrameComponent c = ref components[i];
+ c.Pred = 0;
+ }
+ }
this.eobrun = 0;
@@ -165,8 +183,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
}
// Find marker
- this.bitsCount = 0;
-
+ // this.bitsCount = 0;
// // TODO: We need to make sure we are not overwriting anything here.
// fileMarker = JpegDecoderCore.FindNextFileMarker(stream);
// // Some bad images seem to pad Scan blocks with e.g. zero bytes, skip past
@@ -205,7 +222,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static int GetBlockBufferOffset(FrameComponent component, int row, int col)
+ private static int GetBlockBufferOffset(ref FrameComponent component, int row, int col)
{
return 64 * (((component.BlocksPerLine + 1) * row) + col);
}
@@ -217,7 +234,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
int mcuCol = mcu % mcusPerLine;
int blockRow = (mcuRow * component.VerticalFactor) + row;
int blockCol = (mcuCol * component.HorizontalFactor) + col;
- int offset = GetBlockBufferOffset(component, blockRow, blockCol);
+ int offset = GetBlockBufferOffset(ref component, blockRow, blockCol);
decode(ref component, offset, dcHuffmanTables, acHuffmanTables, stream);
}
@@ -226,7 +243,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
{
int blockRow = (mcu / component.BlocksPerLine) | 0;
int blockCol = mcu % component.BlocksPerLine;
- int offset = GetBlockBufferOffset(component, blockRow, blockCol);
+ int offset = GetBlockBufferOffset(ref component, blockRow, blockCol);
decode(ref component, offset, dcHuffmanTables, acHuffmanTables, stream);
}
@@ -394,7 +411,6 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
while (k <= e)
{
byte z = QuantizationTables.DctZigZag[k];
- int successiveACNextValue = 0;
switch (this.successiveACState)
{
case 0: // Initial state
@@ -421,7 +437,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
throw new ImageFormatException("Invalid ACn encoding");
}
- successiveACNextValue = this.ReceiveAndExtend(s, stream);
+ this.successiveACNextValue = this.ReceiveAndExtend(s, stream);
this.successiveACState = r > 0 ? 2 : 3;
}
@@ -449,7 +465,7 @@ namespace ImageSharp.Formats.Jpeg.Port.Components
}
else
{
- component.BlockData[offset + z] = (short)(successiveACNextValue << this.successiveState);
+ component.BlockData[offset + z] = (short)(this.successiveACNextValue << this.successiveState);
this.successiveACState = 0;
}
diff --git a/src/ImageSharp/Formats/Jpeg/Port/JpegDecoderCore.cs b/src/ImageSharp/Formats/Jpeg/Port/JpegDecoderCore.cs
index abdabcd49..21c28043b 100644
--- a/src/ImageSharp/Formats/Jpeg/Port/JpegDecoderCore.cs
+++ b/src/ImageSharp/Formats/Jpeg/Port/JpegDecoderCore.cs
@@ -7,6 +7,7 @@ namespace ImageSharp.Formats.Jpeg.Port
{
using System;
using System.Collections.Generic;
+ using System.Diagnostics;
using System.IO;
using System.Runtime.CompilerServices;
@@ -198,6 +199,12 @@ namespace ImageSharp.Formats.Jpeg.Port
this.quantizationTables = null;
}
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
+ private static int GetBlockBufferOffset(ref Component component, int row, int col)
+ {
+ return 64 * (((component.BlocksPerLine + 1) * row) + col);
+ }
+
private void ParseStream()
{
// Check for the Start Of Image marker.
@@ -325,7 +332,7 @@ namespace ImageSharp.Formats.Jpeg.Port
BlocksPerColumn = frameComponent.BlocksPerColumn
};
- this.BuildComponentData(ref component);
+ this.BuildComponentData(ref component, ref frameComponent);
this.components.Components[i] = component;
}
@@ -422,8 +429,6 @@ namespace ImageSharp.Formats.Jpeg.Port
///
private void ProcessDqtMarker(int remaining)
{
- // Pooled. Disposed on disposal of decoder
- this.quantizationTables.Tables = new Buffer2D(64, 4);
while (remaining > 0)
{
bool done = false;
@@ -622,10 +627,10 @@ namespace ImageSharp.Formats.Jpeg.Port
private void ProcessStartOfScanMarker()
{
int selectorsCount = this.InputStream.ReadByte();
- int index = -1;
+ int componentIndex = -1;
for (int i = 0; i < selectorsCount; i++)
{
- index = -1;
+ componentIndex = -1;
int selector = this.InputStream.ReadByte();
for (int j = 0; j < this.frame.ComponentIds.Length; j++)
@@ -633,16 +638,16 @@ namespace ImageSharp.Formats.Jpeg.Port
byte id = this.frame.ComponentIds[j];
if (selector == id)
{
- index = j;
+ componentIndex = j;
}
}
- if (index < 0)
+ if (componentIndex < 0)
{
throw new ImageFormatException("Unknown component selector");
}
- ref FrameComponent component = ref this.frame.Components[index];
+ ref FrameComponent component = ref this.frame.Components[componentIndex];
int tableSpec = this.InputStream.ReadByte();
component.DCHuffmanTableId = tableSpec >> 4;
component.ACHuffmanTableId = tableSpec & 15;
@@ -661,22 +666,50 @@ namespace ImageSharp.Formats.Jpeg.Port
this.dcHuffmanTables,
this.acHuffmanTables,
this.frame.Components,
- index,
+ componentIndex,
selectorsCount,
this.resetInterval,
spectralStart,
spectralEnd,
successiveApproximation >> 4,
successiveApproximation & 15);
+
+ Debug.WriteLine("spectralStart= " + spectralStart);
+ Debug.WriteLine("spectralEnd= " + spectralEnd);
+ Debug.WriteLine("successiveApproximation= " + successiveApproximation);
+ Debug.WriteLine("Components after");
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 10; j++)
+ {
+ Debug.WriteLine("component [" + i + "] : value [" + j + "] =" + this.frame.Components[i].BlockData[j] + "]");
+ }
+ }
}
///
/// Build the data for the given component
///
/// The component
- private void BuildComponentData(ref Component component)
+ /// The frame component
+ private void BuildComponentData(ref Component component, ref FrameComponent frameComponent)
{
// TODO: Write this
+ int blocksPerLine = component.BlocksPerLine;
+ int blocksPerColumn = component.BlocksPerColumn;
+ using (var computationBuffer = Buffer.CreateClean(64))
+ {
+ for (int blockRow = 0; blockRow < blocksPerColumn; blockRow++)
+ {
+ for (int blockCol = 0; blockCol < blocksPerLine; blockCol++)
+ {
+ int offset = GetBlockBufferOffset(ref component, blockRow, blockCol);
+ IDCT.QuantizeAndInverse(this.quantizationTables, ref frameComponent, offset, computationBuffer);
+ }
+ }
+ }
+
+ component.Output = frameComponent.BlockData;
}
///
diff --git a/tests/ImageSharp.Tests/TestImages/Formats/Jpg/jpeg.htm b/tests/ImageSharp.Tests/TestImages/Formats/Jpg/jpeg.htm
new file mode 100644
index 000000000..72a5e448b
--- /dev/null
+++ b/tests/ImageSharp.Tests/TestImages/Formats/Jpg/jpeg.htm
@@ -0,0 +1,63 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/tests/ImageSharp.Tests/TestImages/Formats/Jpg/jpg.js b/tests/ImageSharp.Tests/TestImages/Formats/Jpg/jpg.js
new file mode 100644
index 000000000..6ebf71a69
--- /dev/null
+++ b/tests/ImageSharp.Tests/TestImages/Formats/Jpg/jpg.js
@@ -0,0 +1,1205 @@
+/* Copyright 2014 Mozilla Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the 'License');
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an 'AS IS' BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/* eslint-disable no-multi-spaces */
+
+// import { error, warn } from '../shared/util';
+
+/**
+ * This code was forked from https://github.com/notmasteryet/jpgjs.
+ * The original version was created by GitHub user notmasteryet.
+ *
+ * - The JPEG specification can be found in the ITU CCITT Recommendation T.81
+ * (www.w3.org/Graphics/JPEG/itu-t81.pdf)
+ * - The JFIF specification can be found in the JPEG File Interchange Format
+ * (www.w3.org/Graphics/JPEG/jfif3.pdf)
+ * - The Adobe Application-Specific JPEG markers in the
+ * Supporting the DCT Filters in PostScript Level 2, Technical Note #5116
+ * (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf)
+ */
+
+var error = function(val){
+ console.log(val);
+}
+
+var warn = function(val){
+ console.log(val);
+}
+
+var JpegImage = (function JpegImageClosure() {
+ var dctZigZag = new Uint8Array([
+ 0,
+ 1, 8,
+ 16, 9, 2,
+ 3, 10, 17, 24,
+ 32, 25, 18, 11, 4,
+ 5, 12, 19, 26, 33, 40,
+ 48, 41, 34, 27, 20, 13, 6,
+ 7, 14, 21, 28, 35, 42, 49, 56,
+ 57, 50, 43, 36, 29, 22, 15,
+ 23, 30, 37, 44, 51, 58,
+ 59, 52, 45, 38, 31,
+ 39, 46, 53, 60,
+ 61, 54, 47,
+ 55, 62,
+ 63
+ ]);
+
+ var dctCos1 = 4017; // cos(pi/16)
+ var dctSin1 = 799; // sin(pi/16)
+ var dctCos3 = 3406; // cos(3*pi/16)
+ var dctSin3 = 2276; // sin(3*pi/16)
+ var dctCos6 = 1567; // cos(6*pi/16)
+ var dctSin6 = 3784; // sin(6*pi/16)
+ var dctSqrt2 = 5793; // sqrt(2)
+ var dctSqrt1d2 = 2896; // sqrt(2) / 2
+
+ function JpegImage() {
+ this.decodeTransform = null;
+ this.colorTransform = -1;
+ }
+
+ function buildHuffmanTable(codeLengths, values) {
+ console.log(codeLengths);
+ console.log(values);
+
+ var k = 0, code = [], i, j, length = 16;
+ while (length > 0 && !codeLengths[length - 1]) {
+ length--;
+ }
+
+ code.push({ children: [], index: 0, });
+ var p = code[0], q;
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < codeLengths[i]; j++) {
+ p = code.pop();
+ p.children[p.index] = values[k];
+
+ while (p.index > 0) {
+ p = code.pop();
+ }
+ p.index++;
+ code.push(p);
+ while (code.length <= i) {
+ code.push(q = { children: [], index: 0, });
+ p.children[p.index] = q.children;
+ p = q;
+ }
+ k++;
+ }
+ if (i + 1 < length) {
+ // p here points to last code
+ code.push(q = { children: [], index: 0, });
+ p.children[p.index] = q.children;
+ p = q;
+ }
+ }
+ console.log(code[0].children);
+ console.log(k);
+ return code[0].children;
+ }
+
+ function getBlockBufferOffset(component, row, col) {
+ return 64 * ((component.blocksPerLine + 1) * row + col);
+ }
+
+ function decodeScan(data, offset, frame, components, resetInterval,
+ spectralStart, spectralEnd, successivePrev, successive) {
+ var mcusPerLine = frame.mcusPerLine;
+ var progressive = frame.progressive;
+ var startOffset = offset, bitsData = 0, bitsCount = 0;
+
+ function readBit() {
+ if (bitsCount > 0) {
+ bitsCount--;
+ return (bitsData >> bitsCount) & 1;
+ }
+ bitsData = data[offset++];
+ if (bitsData === 0xFF) {
+ var nextByte = data[offset++];
+ if (nextByte) {
+ error('JPEG error: unexpected marker ' +
+ ((bitsData << 8) | nextByte).toString(16));
+ }
+ // unstuff 0
+ }
+ bitsCount = 7;
+ return bitsData >>> 7;
+ }
+
+ function decodeHuffman(tree) {
+ var node = tree;
+ while (true) {
+ node = node[readBit()];
+ if (typeof node === 'number') {
+ return node;
+ }
+ if (typeof node !== 'object') {
+ error('JPEG error: invalid huffman sequence');
+ }
+ }
+ }
+
+ function receive(length) {
+ var n = 0;
+ while (length > 0) {
+ n = (n << 1) | readBit();
+ length--;
+ }
+ return n;
+ }
+
+ function receiveAndExtend(length) {
+ if (length === 1) {
+ return readBit() === 1 ? 1 : -1;
+ }
+ var n = receive(length);
+ if (n >= 1 << (length - 1)) {
+ return n;
+ }
+ return n + (-1 << length) + 1;
+ }
+
+ function decodeBaseline(component, offset) {
+ var t = decodeHuffman(component.huffmanTableDC);
+ var diff = t === 0 ? 0 : receiveAndExtend(t);
+ component.blockData[offset] = (component.pred += diff);
+ // console.log("component");
+ // console.log(component);
+
+ if(offset === 0){
+ console.log("component at 0");
+ console.log(component.blockData[offset])
+ }
+
+ var k = 1;
+ while (k < 64) {
+ var rs = decodeHuffman(component.huffmanTableAC);
+ var s = rs & 15, r = rs >> 4;
+ if (s === 0) {
+ if (r < 15) {
+ break;
+ }
+ k += 16;
+ continue;
+ }
+ k += r;
+ var z = dctZigZag[k];
+ component.blockData[offset + z] = receiveAndExtend(s);
+ k++;
+ }
+ }
+
+ function decodeDCFirst(component, offset) {
+ var t = decodeHuffman(component.huffmanTableDC);
+ var diff = t === 0 ? 0 : (receiveAndExtend(t) << successive);
+ component.blockData[offset] = (component.pred += diff);
+ }
+
+ function decodeDCSuccessive(component, offset) {
+ component.blockData[offset] |= readBit() << successive;
+ }
+
+ var eobrun = 0;
+ function decodeACFirst(component, offset) {
+ if (eobrun > 0) {
+ eobrun--;
+ return;
+ }
+ var k = spectralStart, e = spectralEnd;
+ while (k <= e) {
+ var rs = decodeHuffman(component.huffmanTableAC);
+ var s = rs & 15, r = rs >> 4;
+ if (s === 0) {
+ if (r < 15) {
+ eobrun = receive(r) + (1 << r) - 1;
+ break;
+ }
+ k += 16;
+ continue;
+ }
+ k += r;
+ var z = dctZigZag[k];
+ component.blockData[offset + z] =
+ receiveAndExtend(s) * (1 << successive);
+ k++;
+ }
+ }
+
+ var successiveACState = 0, successiveACNextValue;
+ function decodeACSuccessive(component, offset) {
+ var k = spectralStart;
+ var e = spectralEnd;
+ var r = 0;
+ var s;
+ var rs;
+ while (k <= e) {
+ var z = dctZigZag[k];
+ switch (successiveACState) {
+ case 0: // initial state
+ rs = decodeHuffman(component.huffmanTableAC);
+ s = rs & 15;
+ r = rs >> 4;
+ if (s === 0) {
+ if (r < 15) {
+ eobrun = receive(r) + (1 << r);
+ successiveACState = 4;
+ } else {
+ r = 16;
+ successiveACState = 1;
+ }
+ } else {
+ if (s !== 1) {
+ error('JPEG error: invalid ACn encoding');
+ }
+ successiveACNextValue = receiveAndExtend(s);
+ successiveACState = r ? 2 : 3;
+ }
+ continue;
+ case 1: // skipping r zero items
+ case 2:
+ if (component.blockData[offset + z]) {
+ component.blockData[offset + z] += (readBit() << successive);
+ } else {
+ r--;
+ if (r === 0) {
+ successiveACState = successiveACState === 2 ? 3 : 0;
+ }
+ }
+ break;
+ case 3: // set value for a zero item
+ if (component.blockData[offset + z]) {
+ component.blockData[offset + z] += (readBit() << successive);
+ } else {
+ component.blockData[offset + z] =
+ successiveACNextValue << successive;
+ successiveACState = 0;
+ }
+ break;
+ case 4: // eob
+ if (component.blockData[offset + z]) {
+ component.blockData[offset + z] += (readBit() << successive);
+ }
+ break;
+ }
+ k++;
+ }
+ if (successiveACState === 4) {
+ eobrun--;
+ if (eobrun === 0) {
+ successiveACState = 0;
+ }
+ }
+ }
+
+ function decodeMcu(component, decode, mcu, row, col) {
+ var mcuRow = (mcu / mcusPerLine) | 0;
+ var mcuCol = mcu % mcusPerLine;
+ var blockRow = mcuRow * component.v + row;
+ var blockCol = mcuCol * component.h + col;
+ var offset = getBlockBufferOffset(component, blockRow, blockCol);
+
+ // console.log("MCU Offset: " + offset);
+ decode(component, offset);
+ }
+
+ function decodeBlock(component, decode, mcu) {
+ var blockRow = (mcu / component.blocksPerLine) | 0;
+ var blockCol = mcu % component.blocksPerLine;
+ var offset = getBlockBufferOffset(component, blockRow, blockCol);
+ decode(component, offset);
+ }
+
+ var componentsLength = components.length;
+ var component, i, j, k, n;
+ var decodeFn;
+ if (progressive) {
+ if (spectralStart === 0) {
+ decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive;
+ console.log(successivePrev === 0 ? "decodeDCFirst" : "decodeDCSuccessive");
+ } else {
+ decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive;
+ console.log(successivePrev === 0 ? "decodeACFirst" : "decodeACSuccessive");
+ }
+ } else {
+ decodeFn = decodeBaseline;
+ }
+
+ var mcu = 0, fileMarker;
+ var mcuExpected;
+ if (componentsLength === 1) {
+ mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn;
+ } else {
+ mcuExpected = mcusPerLine * frame.mcusPerColumn;
+ }
+
+ console.log("mcuExpected = "+ mcuExpected);
+
+ var h, v;
+ while (mcu < mcuExpected) {
+ // reset interval stuff
+ var mcuToRead = resetInterval ?
+ Math.min(mcuExpected - mcu, resetInterval) : mcuExpected;
+ for (i = 0; i < componentsLength; i++) {
+ components[i].pred = 0;
+ }
+ eobrun = 0;
+
+ if (componentsLength === 1) {
+ component = components[0];
+
+ for (n = 0; n < mcuToRead; n++) {
+ decodeBlock(component, decodeFn, mcu);
+ mcu++;
+ }
+ } else {
+ for (n = 0; n < mcuToRead; n++) {
+ for (i = 0; i < componentsLength; i++) {
+ component = components[i];
+ h = component.h;
+ v = component.v;
+ for (j = 0; j < v; j++) {
+ for (k = 0; k < h; k++) {
+ decodeMcu(component, decodeFn, mcu, j, k);
+ }
+ }
+ }
+ mcu++;
+ }
+ }
+
+ // find marker
+ bitsCount = 0;
+ fileMarker = findNextFileMarker(data, offset);
+ // Some bad images seem to pad Scan blocks with e.g. zero bytes, skip past
+ // those to attempt to find a valid marker (fixes issue4090.pdf).
+ if (fileMarker && fileMarker.invalid) {
+ warn('decodeScan - unexpected MCU data, next marker is: ' +
+ fileMarker.invalid);
+ offset = fileMarker.offset;
+ }
+ var marker = fileMarker && fileMarker.marker;
+ if (!marker || marker <= 0xFF00) {
+ error('JPEG error: marker was not found');
+ }
+
+ if (marker >= 0xFFD0 && marker <= 0xFFD7) { // RSTx
+ offset += 2;
+ } else {
+ break;
+ }
+ }
+
+ fileMarker = findNextFileMarker(data, offset);
+ // Some images include more Scan blocks than expected, skip past those and
+ // attempt to find the next valid marker (fixes issue8182.pdf).
+ if (fileMarker && fileMarker.invalid) {
+ warn('decodeScan - unexpected Scan data, next marker is: ' +
+ fileMarker.invalid);
+ offset = fileMarker.offset;
+ }
+
+ return offset - startOffset;
+ }
+
+ // A port of poppler's IDCT method which in turn is taken from:
+ // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
+ // 'Practical Fast 1-D DCT Algorithms with 11 Multiplications',
+ // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
+ // 988-991.
+ function quantizeAndInverse(component, blockBufferOffset, p) {
+ var qt = component.quantizationTable, blockData = component.blockData;
+ var v0, v1, v2, v3, v4, v5, v6, v7;
+ var p0, p1, p2, p3, p4, p5, p6, p7;
+ var t;
+
+ if (!qt) {
+ error('JPEG error: missing required Quantization Table.');
+ }
+
+ // inverse DCT on rows
+ for (var row = 0; row < 64; row += 8) {
+ // gather block data
+ p0 = blockData[blockBufferOffset + row];
+ p1 = blockData[blockBufferOffset + row + 1];
+ p2 = blockData[blockBufferOffset + row + 2];
+ p3 = blockData[blockBufferOffset + row + 3];
+ p4 = blockData[blockBufferOffset + row + 4];
+ p5 = blockData[blockBufferOffset + row + 5];
+ p6 = blockData[blockBufferOffset + row + 6];
+ p7 = blockData[blockBufferOffset + row + 7];
+
+ // dequant p0
+ p0 *= qt[row];
+
+ // check for all-zero AC coefficients
+ if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) {
+ t = (dctSqrt2 * p0 + 512) >> 10;
+ p[row] = t;
+ p[row + 1] = t;
+ p[row + 2] = t;
+ p[row + 3] = t;
+ p[row + 4] = t;
+ p[row + 5] = t;
+ p[row + 6] = t;
+ p[row + 7] = t;
+ continue;
+ }
+ // dequant p1 ... p7
+ p1 *= qt[row + 1];
+ p2 *= qt[row + 2];
+ p3 *= qt[row + 3];
+ p4 *= qt[row + 4];
+ p5 *= qt[row + 5];
+ p6 *= qt[row + 6];
+ p7 *= qt[row + 7];
+
+ // stage 4
+ v0 = (dctSqrt2 * p0 + 128) >> 8;
+ v1 = (dctSqrt2 * p4 + 128) >> 8;
+ v2 = p2;
+ v3 = p6;
+ v4 = (dctSqrt1d2 * (p1 - p7) + 128) >> 8;
+ v7 = (dctSqrt1d2 * (p1 + p7) + 128) >> 8;
+ v5 = p3 << 4;
+ v6 = p5 << 4;
+
+ // stage 3
+ v0 = (v0 + v1 + 1) >> 1;
+ v1 = v0 - v1;
+ t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
+ v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
+ v3 = t;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = v4 - v6;
+ v7 = (v7 + v5 + 1) >> 1;
+ v5 = v7 - v5;
+
+ // stage 2
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = v0 - v3;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = v1 - v2;
+ t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
+ v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
+ v7 = t;
+ t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
+ v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p[row] = v0 + v7;
+ p[row + 7] = v0 - v7;
+ p[row + 1] = v1 + v6;
+ p[row + 6] = v1 - v6;
+ p[row + 2] = v2 + v5;
+ p[row + 5] = v2 - v5;
+ p[row + 3] = v3 + v4;
+ p[row + 4] = v3 - v4;
+ }
+
+ // inverse DCT on columns
+ for (var col = 0; col < 8; ++col) {
+ p0 = p[col];
+ p1 = p[col + 8];
+ p2 = p[col + 16];
+ p3 = p[col + 24];
+ p4 = p[col + 32];
+ p5 = p[col + 40];
+ p6 = p[col + 48];
+ p7 = p[col + 56];
+
+ // check for all-zero AC coefficients
+ if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) {
+ t = (dctSqrt2 * p0 + 8192) >> 14;
+ // convert to 8 bit
+ t = (t < -2040) ? 0 : (t >= 2024) ? 255 : (t + 2056) >> 4;
+ blockData[blockBufferOffset + col] = t;
+ blockData[blockBufferOffset + col + 8] = t;
+ blockData[blockBufferOffset + col + 16] = t;
+ blockData[blockBufferOffset + col + 24] = t;
+ blockData[blockBufferOffset + col + 32] = t;
+ blockData[blockBufferOffset + col + 40] = t;
+ blockData[blockBufferOffset + col + 48] = t;
+ blockData[blockBufferOffset + col + 56] = t;
+ continue;
+ }
+
+ // stage 4
+ v0 = (dctSqrt2 * p0 + 2048) >> 12;
+ v1 = (dctSqrt2 * p4 + 2048) >> 12;
+ v2 = p2;
+ v3 = p6;
+ v4 = (dctSqrt1d2 * (p1 - p7) + 2048) >> 12;
+ v7 = (dctSqrt1d2 * (p1 + p7) + 2048) >> 12;
+ v5 = p3;
+ v6 = p5;
+
+ // stage 3
+ // Shift v0 by 128.5 << 5 here, so we don't need to shift p0...p7 when
+ // converting to UInt8 range later.
+ v0 = ((v0 + v1 + 1) >> 1) + 4112;
+ v1 = v0 - v1;
+ t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
+ v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
+ v3 = t;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = v4 - v6;
+ v7 = (v7 + v5 + 1) >> 1;
+ v5 = v7 - v5;
+
+ // stage 2
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = v0 - v3;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = v1 - v2;
+ t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
+ v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
+ v7 = t;
+ t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
+ v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p0 = v0 + v7;
+ p7 = v0 - v7;
+ p1 = v1 + v6;
+ p6 = v1 - v6;
+ p2 = v2 + v5;
+ p5 = v2 - v5;
+ p3 = v3 + v4;
+ p4 = v3 - v4;
+
+ // convert to 8-bit integers
+ p0 = (p0 < 16) ? 0 : (p0 >= 4080) ? 255 : p0 >> 4;
+ p1 = (p1 < 16) ? 0 : (p1 >= 4080) ? 255 : p1 >> 4;
+ p2 = (p2 < 16) ? 0 : (p2 >= 4080) ? 255 : p2 >> 4;
+ p3 = (p3 < 16) ? 0 : (p3 >= 4080) ? 255 : p3 >> 4;
+ p4 = (p4 < 16) ? 0 : (p4 >= 4080) ? 255 : p4 >> 4;
+ p5 = (p5 < 16) ? 0 : (p5 >= 4080) ? 255 : p5 >> 4;
+ p6 = (p6 < 16) ? 0 : (p6 >= 4080) ? 255 : p6 >> 4;
+ p7 = (p7 < 16) ? 0 : (p7 >= 4080) ? 255 : p7 >> 4;
+
+ // store block data
+ blockData[blockBufferOffset + col] = p0;
+ blockData[blockBufferOffset + col + 8] = p1;
+ blockData[blockBufferOffset + col + 16] = p2;
+ blockData[blockBufferOffset + col + 24] = p3;
+ blockData[blockBufferOffset + col + 32] = p4;
+ blockData[blockBufferOffset + col + 40] = p5;
+ blockData[blockBufferOffset + col + 48] = p6;
+ blockData[blockBufferOffset + col + 56] = p7;
+ }
+ }
+
+ function buildComponentData(frame, component) {
+ var blocksPerLine = component.blocksPerLine;
+ var blocksPerColumn = component.blocksPerColumn;
+ var computationBuffer = new Int16Array(64);
+ console.log("qt");
+ console.log(component.quantizationTable);
+ for (var blockRow = 0; blockRow < blocksPerColumn; blockRow++) {
+ for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) {
+ var offset = getBlockBufferOffset(component, blockRow, blockCol);
+ quantizeAndInverse(component, offset, computationBuffer);
+ }
+ }
+
+ console.log("component.blockData");
+ console.log(component.blockData);
+ return component.blockData;
+ }
+
+ function clamp0to255(a) {
+ return a <= 0 ? 0 : a >= 255 ? 255 : a;
+ }
+
+ function findNextFileMarker(data, currentPos, startPos) {
+ function peekUint16(pos) {
+ return (data[pos] << 8) | data[pos + 1];
+ }
+
+ var maxPos = data.length - 1;
+ var newPos = startPos < currentPos ? startPos : currentPos;
+
+ if (currentPos >= maxPos) {
+ return null; // Don't attempt to read non-existent data and just return.
+ }
+ var currentMarker = peekUint16(currentPos);
+ if (currentMarker >= 0xFFC0 && currentMarker <= 0xFFFE) {
+ return {
+ invalid: null,
+ marker: currentMarker,
+ offset: currentPos,
+ };
+ }
+ var newMarker = peekUint16(newPos);
+ while (!(newMarker >= 0xFFC0 && newMarker <= 0xFFFE)) {
+ if (++newPos >= maxPos) {
+ return null; // Don't attempt to read non-existent data and just return.
+ }
+ newMarker = peekUint16(newPos);
+ }
+ return {
+ invalid: currentMarker.toString(16),
+ marker: newMarker,
+ offset: newPos,
+ };
+ }
+
+ JpegImage.prototype = {
+ parse: function parse(data) {
+
+ function readUint16() {
+ var value = (data[offset] << 8) | data[offset + 1];
+ offset += 2;
+ return value;
+ }
+
+ function readDataBlock() {
+ var length = readUint16();
+ var endOffset = offset + length - 2;
+
+ var fileMarker = findNextFileMarker(data, endOffset, offset);
+ if (fileMarker && fileMarker.invalid) {
+ warn('readDataBlock - incorrect length, next marker is: ' +
+ fileMarker.invalid);
+ endOffset = fileMarker.offset;
+ }
+
+ var array = data.subarray(offset, endOffset);
+ offset += array.length;
+ return array;
+ }
+
+ function prepareComponents(frame) {
+ var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / frame.maxH);
+ var mcusPerColumn = Math.ceil(frame.scanLines / 8 / frame.maxV);
+ for (var i = 0; i < frame.components.length; i++) {
+ component = frame.components[i];
+ var blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) *
+ component.h / frame.maxH);
+ var blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) *
+ component.v / frame.maxV);
+ var blocksPerLineForMcu = mcusPerLine * component.h;
+ var blocksPerColumnForMcu = mcusPerColumn * component.v;
+
+ var blocksBufferSize = 64 * blocksPerColumnForMcu *
+ (blocksPerLineForMcu + 1);
+ component.blockData = new Int16Array(blocksBufferSize);
+ component.blocksPerLine = blocksPerLine;
+ component.blocksPerColumn = blocksPerColumn;
+ }
+ frame.mcusPerLine = mcusPerLine;
+ frame.mcusPerColumn = mcusPerColumn;
+ }
+
+ var offset = 0;
+ var jfif = null;
+ var adobe = null;
+ var frame, resetInterval;
+ var quantizationTables = [];
+ var huffmanTablesAC = [], huffmanTablesDC = [];
+ var fileMarker = readUint16();
+ if (fileMarker !== 0xFFD8) { // SOI (Start of Image)
+ error('JPEG error: SOI not found');
+ }
+
+ fileMarker = readUint16();
+ while (fileMarker !== 0xFFD9) { // EOI (End of image)
+ var i, j, l;
+ switch (fileMarker) {
+ case 0xFFE0: // APP0 (Application Specific)
+ case 0xFFE1: // APP1
+ case 0xFFE2: // APP2
+ case 0xFFE3: // APP3
+ case 0xFFE4: // APP4
+ case 0xFFE5: // APP5
+ case 0xFFE6: // APP6
+ case 0xFFE7: // APP7
+ case 0xFFE8: // APP8
+ case 0xFFE9: // APP9
+ case 0xFFEA: // APP10
+ case 0xFFEB: // APP11
+ case 0xFFEC: // APP12
+ case 0xFFED: // APP13
+ case 0xFFEE: // APP14
+ case 0xFFEF: // APP15
+ case 0xFFFE: // COM (Comment)
+ var appData = readDataBlock();
+
+ if (fileMarker === 0xFFE0) {
+ if (appData[0] === 0x4A && appData[1] === 0x46 &&
+ appData[2] === 0x49 && appData[3] === 0x46 &&
+ appData[4] === 0) { // 'JFIF\x00'
+ jfif = {
+ version: { major: appData[5], minor: appData[6], },
+ densityUnits: appData[7],
+ xDensity: (appData[8] << 8) | appData[9],
+ yDensity: (appData[10] << 8) | appData[11],
+ thumbWidth: appData[12],
+ thumbHeight: appData[13],
+ thumbData: appData.subarray(14, 14 +
+ 3 * appData[12] * appData[13]),
+ };
+ }
+ }
+ // TODO APP1 - Exif
+ if (fileMarker === 0xFFEE) {
+ if (appData[0] === 0x41 && appData[1] === 0x64 &&
+ appData[2] === 0x6F && appData[3] === 0x62 &&
+ appData[4] === 0x65) { // 'Adobe'
+ adobe = {
+ version: (appData[5] << 8) | appData[6],
+ flags0: (appData[7] << 8) | appData[8],
+ flags1: (appData[9] << 8) | appData[10],
+ transformCode: appData[11],
+ };
+ }
+ }
+ break;
+
+ case 0xFFDB: // DQT (Define Quantization Tables)
+ var quantizationTablesLength = readUint16();
+ var quantizationTablesEnd = quantizationTablesLength + offset - 2;
+ var z;
+ while (offset < quantizationTablesEnd) {
+ var quantizationTableSpec = data[offset++];
+ var tableData = new Uint16Array(64);
+ if ((quantizationTableSpec >> 4) === 0) { // 8 bit values
+ for (j = 0; j < 64; j++) {
+ z = dctZigZag[j];
+ tableData[z] = data[offset++];
+ }
+ } else if ((quantizationTableSpec >> 4) === 1) { // 16 bit values
+ for (j = 0; j < 64; j++) {
+ z = dctZigZag[j];
+ tableData[z] = readUint16();
+ }
+ } else {
+ error('JPEG error: DQT - invalid table spec');
+ }
+ quantizationTables[quantizationTableSpec & 15] = tableData;
+ }
+ break;
+
+ case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT)
+ case 0xFFC1: // SOF1 (Start of Frame, Extended DCT)
+ case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT)
+ if (frame) {
+ error('JPEG error: Only single frame JPEGs supported');
+ }
+ console.log("filemarker");
+ console.log(fileMarker);
+ console.log(offset);
+ readUint16(); // skip data length
+ frame = {};
+ frame.extended = (fileMarker === 0xFFC1);
+ frame.progressive = (fileMarker === 0xFFC2);
+ frame.precision = data[offset++];
+ frame.scanLines = readUint16();
+ frame.samplesPerLine = readUint16();
+ frame.components = [];
+ frame.componentIds = {};
+ var componentsCount = data[offset++], componentId;
+ var maxH = 0, maxV = 0;
+ for (i = 0; i < componentsCount; i++) {
+ componentId = data[offset];
+ var h = data[offset + 1] >> 4;
+ var v = data[offset + 1] & 15;
+ if (maxH < h) {
+ maxH = h;
+ }
+ if (maxV < v) {
+ maxV = v;
+ }
+ var qId = data[offset + 2];
+ l = frame.components.push({
+ h,
+ v,
+ quantizationId: qId,
+ quantizationTable: null, // See comment below.
+ });
+ frame.componentIds[componentId] = l - 1;
+ offset += 3;
+ }
+
+ frame.maxH = maxH;
+ frame.maxV = maxV;
+ prepareComponents(frame);
+ break;
+
+ case 0xFFC4: // DHT (Define Huffman Tables)
+ var huffmanLength = readUint16();
+ for (i = 2; i < huffmanLength;) {
+ console.log("offset= " + offset);
+ var huffmanTableSpec = data[offset++];
+ console.log("huffmanTableSpec= " + huffmanTableSpec);
+
+ var codeLengths = new Uint8Array(16);
+ var codeLengthSum = 0;
+ for (j = 0; j < 16; j++, offset++) {
+ codeLengthSum += (codeLengths[j] = data[offset]);
+ }
+ console.log("codelengthsum = " + codeLengthSum);
+ console.log("offset = " + offset);
+ var huffmanValues = new Uint8Array(codeLengthSum);
+ for (j = 0; j < codeLengthSum; j++, offset++) {
+ huffmanValues[j] = data[offset];
+ }
+ i += 17 + codeLengthSum;
+
+
+ console.log((huffmanTableSpec >> 4) === 0 ? "DC":"AC");
+ ((huffmanTableSpec >> 4) === 0
+ ? huffmanTablesDC
+ : huffmanTablesAC)[huffmanTableSpec & 15] =
+ buildHuffmanTable(codeLengths, huffmanValues);
+ }
+ break;
+
+ case 0xFFDD: // DRI (Define Restart Interval)
+ readUint16(); // skip data length
+ resetInterval = readUint16();
+ break;
+
+ case 0xFFDA: // SOS (Start of Scan)
+ readUint16(); // scanLength
+ var selectorsCount = data[offset++];
+ var components = [], component;
+ for (i = 0; i < selectorsCount; i++) {
+ var ci = data[offset++];
+ console.log("ci= " + ci);
+ console.log("offset= " + offset);
+
+ var componentIndex = frame.componentIds[ci];
+ console.log("componentIndex= " + componentIndex);
+ component = frame.components[componentIndex];
+ var tableSpec = data[offset++];
+ component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4];
+ component.huffmanTableAC = huffmanTablesAC[tableSpec & 15];
+ components.push(component);
+ }
+ console.log("components= " + components);
+
+ var spectralStart = data[offset++];
+ var spectralEnd = data[offset++];
+ var successiveApproximation = data[offset++];
+
+ console.log(frame.componentIds);
+ console.log("spectralStart= " + spectralStart);
+ console.log("spectralEnd= " + spectralEnd);
+ console.log("successiveApproximation= " + successiveApproximation);
+ // console.log("components before")
+ // console.log(components)
+ var processed = decodeScan(data, offset,
+ frame, components, resetInterval,
+ spectralStart, spectralEnd,
+ successiveApproximation >> 4, successiveApproximation & 15);
+ offset += processed;
+ console.log("components after");
+ // console.log(frame);
+ for (var i = 0; i < 3; i++){
+ for (var j = 0; j < 10; j++){
+ console.log("component ["+ i +"] : value ["+j+"] ="+ frame.components[i].blockData[j]+"]");
+ }
+ }
+ break;
+
+ case 0xFFFF: // Fill bytes
+ if (data[offset] !== 0xFF) { // Avoid skipping a valid marker.
+ offset--;
+ }
+ break;
+
+ default:
+ if (data[offset - 3] === 0xFF &&
+ data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) {
+ // could be incorrect encoding -- last 0xFF byte of the previous
+ // block was eaten by the encoder
+ offset -= 3;
+ break;
+ }
+
+ // TODO: Delete this after testing
+ fileMarker = 0xFFD9;
+ // error('JPEG error: unknown marker ' + fileMarker.toString(16));
+ }
+ fileMarker = readUint16();
+ }
+
+ console.log("quantizationTables");
+ console.log(quantizationTables);
+
+ this.width = frame.samplesPerLine;
+ this.height = frame.scanLines;
+ this.jfif = jfif;
+ this.adobe = adobe;
+ this.components = [];
+ for (i = 0; i < frame.components.length; i++) {
+ component = frame.components[i];
+
+ // Prevent errors when DQT markers are placed after SOF{n} markers,
+ // by assigning the `quantizationTable` entry after the entire image
+ // has been parsed (fixes issue7406.pdf).
+ var quantizationTable = quantizationTables[component.quantizationId];
+ if (quantizationTable) {
+ component.quantizationTable = quantizationTable;
+ }
+
+ this.components.push({
+ output: buildComponentData(frame, component),
+ scaleX: component.h / frame.maxH,
+ scaleY: component.v / frame.maxV,
+ blocksPerLine: component.blocksPerLine,
+ blocksPerColumn: component.blocksPerColumn,
+ });
+ }
+
+ console.log("components");
+ console.log(this.components);
+ this.numComponents = this.components.length;
+ },
+
+ _getLinearizedBlockData: function getLinearizedBlockData(width, height) {
+ var scaleX = this.width / width, scaleY = this.height / height;
+
+ var component, componentScaleX, componentScaleY, blocksPerScanline;
+ var x, y, i, j, k;
+ var index;
+ var offset = 0;
+ var output;
+ var numComponents = this.components.length;
+ var dataLength = width * height * numComponents;
+ var data = new Uint8Array(dataLength);
+ var xScaleBlockOffset = new Uint32Array(width);
+ var mask3LSB = 0xfffffff8; // used to clear the 3 LSBs
+
+ for (i = 0; i < numComponents; i++) {
+ component = this.components[i];
+ componentScaleX = component.scaleX * scaleX;
+ componentScaleY = component.scaleY * scaleY;
+ offset = i;
+ output = component.output;
+ blocksPerScanline = (component.blocksPerLine + 1) << 3;
+ // precalculate the xScaleBlockOffset
+ for (x = 0; x < width; x++) {
+ j = 0 | (x * componentScaleX);
+ xScaleBlockOffset[x] = ((j & mask3LSB) << 3) | (j & 7);
+ }
+ // linearize the blocks of the component
+ for (y = 0; y < height; y++) {
+ j = 0 | (y * componentScaleY);
+ index = blocksPerScanline * (j & mask3LSB) | ((j & 7) << 3);
+ for (x = 0; x < width; x++) {
+ data[offset] = output[index + xScaleBlockOffset[x]];
+ offset += numComponents;
+ }
+ }
+ }
+
+ // decodeTransform contains pairs of multiplier (-256..256) and additive
+ var transform = this.decodeTransform;
+ if (transform) {
+ for (i = 0; i < dataLength;) {
+ for (j = 0, k = 0; j < numComponents; j++, i++, k += 2) {
+ data[i] = ((data[i] * transform[k]) >> 8) + transform[k + 1];
+ }
+ }
+ }
+ return data;
+ },
+
+ _isColorConversionNeeded: function isColorConversionNeeded() {
+ if (this.adobe && this.adobe.transformCode) {
+ // The adobe transform marker overrides any previous setting
+ return true;
+ } else if (this.numComponents === 3) {
+ if (!this.adobe && this.colorTransform === 0) {
+ // If the Adobe transform marker is not present and the image
+ // dictionary has a 'ColorTransform' entry, explicitly set to `0`,
+ // then the colours should *not* be transformed.
+ return false;
+ }
+ return true;
+ }
+ // `this.numComponents !== 3`
+ if (!this.adobe && this.colorTransform === 1) {
+ // If the Adobe transform marker is not present and the image
+ // dictionary has a 'ColorTransform' entry, explicitly set to `1`,
+ // then the colours should be transformed.
+ return true;
+ }
+ return false;
+ },
+
+ _convertYccToRgb: function convertYccToRgb(data) {
+ var Y, Cb, Cr;
+ for (var i = 0, length = data.length; i < length; i += 3) {
+ Y = data[i ];
+ Cb = data[i + 1];
+ Cr = data[i + 2];
+ data[i ] = clamp0to255(Y - 179.456 + 1.402 * Cr);
+ data[i + 1] = clamp0to255(Y + 135.459 - 0.344 * Cb - 0.714 * Cr);
+ data[i + 2] = clamp0to255(Y - 226.816 + 1.772 * Cb);
+ }
+ return data;
+ },
+
+ _convertYcckToRgb: function convertYcckToRgb(data) {
+ var Y, Cb, Cr, k;
+ var offset = 0;
+ for (var i = 0, length = data.length; i < length; i += 4) {
+ Y = data[i];
+ Cb = data[i + 1];
+ Cr = data[i + 2];
+ k = data[i + 3];
+
+ var r = -122.67195406894 +
+ Cb * (-6.60635669420364e-5 * Cb + 0.000437130475926232 * Cr -
+ 5.4080610064599e-5 * Y + 0.00048449797120281 * k -
+ 0.154362151871126) +
+ Cr * (-0.000957964378445773 * Cr + 0.000817076911346625 * Y -
+ 0.00477271405408747 * k + 1.53380253221734) +
+ Y * (0.000961250184130688 * Y - 0.00266257332283933 * k +
+ 0.48357088451265) +
+ k * (-0.000336197177618394 * k + 0.484791561490776);
+
+ var g = 107.268039397724 +
+ Cb * (2.19927104525741e-5 * Cb - 0.000640992018297945 * Cr +
+ 0.000659397001245577 * Y + 0.000426105652938837 * k -
+ 0.176491792462875) +
+ Cr * (-0.000778269941513683 * Cr + 0.00130872261408275 * Y +
+ 0.000770482631801132 * k - 0.151051492775562) +
+ Y * (0.00126935368114843 * Y - 0.00265090189010898 * k +
+ 0.25802910206845) +
+ k * (-0.000318913117588328 * k - 0.213742400323665);
+
+ var b = -20.810012546947 +
+ Cb * (-0.000570115196973677 * Cb - 2.63409051004589e-5 * Cr +
+ 0.0020741088115012 * Y - 0.00288260236853442 * k +
+ 0.814272968359295) +
+ Cr * (-1.53496057440975e-5 * Cr - 0.000132689043961446 * Y +
+ 0.000560833691242812 * k - 0.195152027534049) +
+ Y * (0.00174418132927582 * Y - 0.00255243321439347 * k +
+ 0.116935020465145) +
+ k * (-0.000343531996510555 * k + 0.24165260232407);
+
+ data[offset++] = clamp0to255(r);
+ data[offset++] = clamp0to255(g);
+ data[offset++] = clamp0to255(b);
+ }
+ return data;
+ },
+
+ _convertYcckToCmyk: function convertYcckToCmyk(data) {
+ var Y, Cb, Cr;
+ for (var i = 0, length = data.length; i < length; i += 4) {
+ Y = data[i];
+ Cb = data[i + 1];
+ Cr = data[i + 2];
+ data[i ] = clamp0to255(434.456 - Y - 1.402 * Cr);
+ data[i + 1] = clamp0to255(119.541 - Y + 0.344 * Cb + 0.714 * Cr);
+ data[i + 2] = clamp0to255(481.816 - Y - 1.772 * Cb);
+ // K in data[i + 3] is unchanged
+ }
+ return data;
+ },
+
+ _convertCmykToRgb: function convertCmykToRgb(data) {
+ var c, m, y, k;
+ var offset = 0;
+ var min = -255 * 255 * 255;
+ var scale = 1 / 255 / 255;
+ for (var i = 0, length = data.length; i < length; i += 4) {
+ c = data[i];
+ m = data[i + 1];
+ y = data[i + 2];
+ k = data[i + 3];
+
+ var r =
+ c * (-4.387332384609988 * c + 54.48615194189176 * m +
+ 18.82290502165302 * y + 212.25662451639585 * k -
+ 72734.4411664936) +
+ m * (1.7149763477362134 * m - 5.6096736904047315 * y -
+ 17.873870861415444 * k - 1401.7366389350734) +
+ y * (-2.5217340131683033 * y - 21.248923337353073 * k +
+ 4465.541406466231) -
+ k * (21.86122147463605 * k + 48317.86113160301);
+ var g =
+ c * (8.841041422036149 * c + 60.118027045597366 * m +
+ 6.871425592049007 * y + 31.159100130055922 * k -
+ 20220.756542821975) +
+ m * (-15.310361306967817 * m + 17.575251261109482 * y +
+ 131.35250912493976 * k - 48691.05921601825) +
+ y * (4.444339102852739 * y + 9.8632861493405 * k -
+ 6341.191035517494) -
+ k * (20.737325471181034 * k + 47890.15695978492);
+ var b =
+ c * (0.8842522430003296 * c + 8.078677503112928 * m +
+ 30.89978309703729 * y - 0.23883238689178934 * k -
+ 3616.812083916688) +
+ m * (10.49593273432072 * m + 63.02378494754052 * y +
+ 50.606957656360734 * k - 28620.90484698408) +
+ y * (0.03296041114873217 * y + 115.60384449646641 * k -
+ 49363.43385999684) -
+ k * (22.33816807309886 * k + 45932.16563550634);
+
+ data[offset++] = r >= 0 ? 255 : r <= min ? 0 : 255 + r * scale | 0;
+ data[offset++] = g >= 0 ? 255 : g <= min ? 0 : 255 + g * scale | 0;
+ data[offset++] = b >= 0 ? 255 : b <= min ? 0 : 255 + b * scale | 0;
+ }
+ return data;
+ },
+
+ getData: function getData(width, height, forceRGBoutput) {
+ if (this.numComponents > 4) {
+ error('JPEG error: Unsupported color mode');
+ }
+ // type of data: Uint8Array(width * height * numComponents)
+ var data = this._getLinearizedBlockData(width, height);
+
+ if (this.numComponents === 1 && forceRGBoutput) {
+ var dataLength = data.length;
+ var rgbData = new Uint8Array(dataLength * 3);
+ var offset = 0;
+ for (var i = 0; i < dataLength; i++) {
+ var grayColor = data[i];
+ rgbData[offset++] = grayColor;
+ rgbData[offset++] = grayColor;
+ rgbData[offset++] = grayColor;
+ }
+ return rgbData;
+ } else if (this.numComponents === 3 && this._isColorConversionNeeded()) {
+ return this._convertYccToRgb(data);
+ } else if (this.numComponents === 4) {
+ if (this._isColorConversionNeeded()) {
+ if (forceRGBoutput) {
+ return this._convertYcckToRgb(data);
+ }
+ return this._convertYcckToCmyk(data);
+ } else if (forceRGBoutput) {
+ return this._convertCmykToRgb(data);
+ }
+ }
+ return data;
+ },
+ };
+
+ return JpegImage;
+})();
+
+// export {
+// JpegImage,
+// };