Browse Source

Merge pull request #643 from SixLabors/js/new-jpeg-scan-decoder

Remove Jpeg Huffman Decoder Bottleneck
pull/647/head
James Jackson-South 8 years ago
committed by GitHub
parent
commit
68ca7ff06e
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 22
      src/ImageSharp/Common/Helpers/InliningOptions.cs
  2. 26
      src/ImageSharp/Formats/Jpeg/JpegThrowHelper.cs
  3. 96
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FastACTables.cs
  4. 24
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedByteBuffer512.cs
  5. 6
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt16Buffer257.cs
  6. 8
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt32Buffer18.cs
  7. 8
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedUInt32Buffer18.cs
  8. 10
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsFrameComponent.cs
  9. 195
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsHuffmanTable.cs
  10. 2
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsHuffmanTables.cs
  11. 866
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsScanDecoder.cs
  12. 958
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/ScanDecoder.cs
  13. 57
      src/ImageSharp/Formats/Jpeg/PdfJsPort/PdfJsJpegDecoderCore.cs
  14. 52
      tests/ImageSharp.Benchmarks/Codecs/Jpeg/DecodeJpegParseStreamOnly.cs
  15. 1
      tests/ImageSharp.Tests/Formats/Jpg/JpegDecoderTests.Images.cs
  16. 1
      tests/ImageSharp.Tests/TestImages.cs
  17. 2
      tests/Images/External
  18. BIN
      tests/Images/Input/Jpg/issues/Issue624-DhtHasWrongLength-Progressive-N.jpg

22
src/ImageSharp/Common/Helpers/InliningOptions.cs

@ -0,0 +1,22 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
// Uncomment this for verbose profiler results:
// #define PROFILING
using System.Runtime.CompilerServices;
namespace SixLabors.ImageSharp
{
/// <summary>
/// Global inlining options. Helps temporarily disable inling for better profiler output.
/// </summary>
internal static class InliningOptions
{
#if PROFILING
public const MethodImplOptions ShortMethod = 0;
#else
public const MethodImplOptions ShortMethod = MethodImplOptions.AggressiveInlining;
#endif
public const MethodImplOptions ColdPath = MethodImplOptions.NoInlining;
}
}

26
src/ImageSharp/Formats/Jpeg/JpegThrowHelper.cs

@ -0,0 +1,26 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using System.Runtime.CompilerServices;
namespace SixLabors.ImageSharp.Formats.Jpeg
{
internal static class JpegThrowHelper
{
/// <summary>
/// Cold path optimization for throwing <see cref="ImageFormatException"/>-s
/// </summary>
/// <param name="errorMessage">The error message for the exception</param>
[MethodImpl(MethodImplOptions.NoInlining)]
public static void ThrowImageFormatException(string errorMessage)
{
throw new ImageFormatException(errorMessage);
}
[MethodImpl(MethodImplOptions.NoInlining)]
public static void ThrowBadHuffmanCode()
{
throw new ImageFormatException("Bad Huffman code.");
}
}
}

96
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FastACTables.cs

@ -0,0 +1,96 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using System;
using System.Runtime.CompilerServices;
using SixLabors.Memory;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
/// <summary>
/// The collection of lookup tables used for fast AC entropy scan decoding.
/// </summary>
internal sealed class FastACTables : IDisposable
{
private Buffer2D<short> tables;
/// <summary>
/// Initializes a new instance of the <see cref="FastACTables"/> class.
/// </summary>
/// <param name="memoryAllocator">The memory allocator used to allocate memory for image processing operations.</param>
public FastACTables(MemoryAllocator memoryAllocator)
{
this.tables = memoryAllocator.AllocateClean2D<short>(512, 4);
}
/// <summary>
/// Gets the <see cref="Span{Int16}"/> representing the table at the index in the collection.
/// </summary>
/// <param name="index">The table index.</param>
/// <returns><see cref="Span{Int16}"/></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public ReadOnlySpan<short> GetTableSpan(int index)
{
return this.tables.GetRowSpan(index);
}
/// <summary>
/// Gets a reference to the first element of the AC table indexed by <see cref="PdfJsFrameComponent.ACHuffmanTableId"/>
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public ref short GetAcTableReference(PdfJsFrameComponent component)
{
return ref this.tables.GetRowSpan(component.ACHuffmanTableId)[0];
}
/// <summary>
/// Builds a lookup table for fast AC entropy scan decoding.
/// </summary>
/// <param name="index">The table index.</param>
/// <param name="acHuffmanTables">The collection of AC Huffman tables.</param>
public void BuildACTableLut(int index, PdfJsHuffmanTables acHuffmanTables)
{
const int FastBits = ScanDecoder.FastBits;
Span<short> fastAC = this.tables.GetRowSpan(index);
ref PdfJsHuffmanTable huffman = ref acHuffmanTables[index];
int i;
for (i = 0; i < (1 << FastBits); i++)
{
byte fast = huffman.Lookahead[i];
fastAC[i] = 0;
if (fast < byte.MaxValue)
{
int rs = huffman.Values[fast];
int run = (rs >> 4) & 15;
int magbits = rs & 15;
int len = huffman.Sizes[fast];
if (magbits > 0 && len + magbits <= FastBits)
{
// Magnitude code followed by receive_extend code
int k = ((i << len) & ((1 << FastBits) - 1)) >> (FastBits - magbits);
int m = 1 << (magbits - 1);
if (k < m)
{
k += (int)((~0U << magbits) + 1);
}
// if the result is small enough, we can fit it in fastAC table
if (k >= -128 && k <= 127)
{
fastAC[i] = (short)((k * 256) + (run * 16) + (len + magbits));
}
}
}
}
}
/// <inheritdoc />
public void Dispose()
{
this.tables?.Dispose();
this.tables = null;
}
}
}

24
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedByteBuffer512.cs

@ -0,0 +1,24 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
[StructLayout(LayoutKind.Sequential)]
internal unsafe struct FixedByteBuffer512
{
public fixed byte Data[1 << ScanDecoder.FastBits];
public byte this[int idx]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
ref byte self = ref Unsafe.As<FixedByteBuffer512, byte>(ref this);
return Unsafe.Add(ref self, idx);
}
}
}
}

6
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt16Buffer256.cs → src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt16Buffer257.cs

@ -7,16 +7,16 @@ using System.Runtime.InteropServices;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
[StructLayout(LayoutKind.Sequential)]
internal unsafe struct FixedInt16Buffer256
internal unsafe struct FixedInt16Buffer257
{
public fixed short Data[256];
public fixed short Data[257];
public short this[int idx]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
ref short self = ref Unsafe.As<FixedInt16Buffer256, short>(ref this);
ref short self = ref Unsafe.As<FixedInt16Buffer257, short>(ref this);
return Unsafe.Add(ref self, idx);
}
}

8
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt64Buffer18.cs → src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt32Buffer18.cs

@ -7,16 +7,16 @@ using System.Runtime.InteropServices;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
[StructLayout(LayoutKind.Sequential)]
internal unsafe struct FixedInt64Buffer18
internal unsafe struct FixedInt32Buffer18
{
public fixed long Data[18];
public fixed int Data[18];
public long this[int idx]
public int this[int idx]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
ref long self = ref Unsafe.As<FixedInt64Buffer18, long>(ref this);
ref int self = ref Unsafe.As<FixedInt32Buffer18, int>(ref this);
return Unsafe.Add(ref self, idx);
}
}

8
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedInt16Buffer18.cs → src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/FixedUInt32Buffer18.cs

@ -7,16 +7,16 @@ using System.Runtime.InteropServices;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
[StructLayout(LayoutKind.Sequential)]
internal unsafe struct FixedInt16Buffer18
internal unsafe struct FixedUInt32Buffer18
{
public fixed short Data[18];
public fixed uint Data[18];
public short this[int idx]
public uint this[int idx]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
ref short self = ref Unsafe.As<FixedInt16Buffer18, short>(ref this);
ref uint self = ref Unsafe.As<FixedUInt32Buffer18, uint>(ref this);
return Unsafe.Add(ref self, idx);
}
}

10
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsFrameComponent.cs

@ -129,7 +129,7 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
this.SubSamplingDivisors = c0.SamplingFactors.DivideBy(this.SamplingFactors);
}
this.SpectralBlocks = this.memoryAllocator.Allocate2D<Block8x8>(blocksPerColumnForMcu, blocksPerLineForMcu + 1, true);
this.SpectralBlocks = this.memoryAllocator.AllocateClean2D<Block8x8>(blocksPerColumnForMcu, blocksPerLineForMcu + 1);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
@ -144,5 +144,13 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
return 64 * (((this.WidthInBlocks + 1) * row) + col);
}
// TODO: we need consistence in (row, col) VS (col, row) ordering
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public ref short GetBlockDataReference(int row, int col)
{
ref Block8x8 blockRef = ref this.GetBlockReference(col, row);
return ref Unsafe.As<Block8x8, short>(ref blockRef);
}
}
}

195
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsHuffmanTable.cs

@ -17,163 +17,114 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
/// <summary>
/// Gets the max code array
/// </summary>
public FixedInt64Buffer18 MaxCode;
public FixedUInt32Buffer18 MaxCode;
/// <summary>
/// Gets the value offset array
/// </summary>
public FixedInt16Buffer18 ValOffset;
public FixedInt32Buffer18 ValOffset;
/// <summary>
/// Gets the huffman value array
/// </summary>
public FixedByteBuffer256 HuffVal;
public FixedByteBuffer256 Values;
/// <summary>
/// Gets the lookahead array
/// </summary>
public FixedInt16Buffer256 Lookahead;
public FixedByteBuffer512 Lookahead;
/// <summary>
/// Gets the sizes array
/// </summary>
public FixedInt16Buffer257 Sizes;
/// <summary>
/// Initializes a new instance of the <see cref="PdfJsHuffmanTable"/> struct.
/// </summary>
/// <param name="memoryAllocator">The <see cref="MemoryAllocator"/> to use for buffer allocations.</param>
/// <param name="lengths">The code lengths</param>
/// <param name="count">The code lengths</param>
/// <param name="values">The huffman values</param>
public PdfJsHuffmanTable(MemoryAllocator memoryAllocator, ReadOnlySpan<byte> lengths, ReadOnlySpan<byte> values)
public PdfJsHuffmanTable(MemoryAllocator memoryAllocator, ReadOnlySpan<byte> count, ReadOnlySpan<byte> values)
{
const int length = 257;
using (IBuffer<short> huffsize = memoryAllocator.Allocate<short>(length))
using (IBuffer<short> huffcode = memoryAllocator.Allocate<short>(length))
const int Length = 257;
using (IBuffer<short> huffcode = memoryAllocator.Allocate<short>(Length))
{
ref short huffsizeRef = ref MemoryMarshal.GetReference(huffsize.GetSpan());
ref short huffcodeRef = ref MemoryMarshal.GetReference(huffcode.GetSpan());
GenerateSizeTable(lengths, ref huffsizeRef);
GenerateCodeTable(ref huffsizeRef, ref huffcodeRef, length);
this.GenerateDecoderTables(lengths, ref huffcodeRef);
this.GenerateLookaheadTables(lengths, values, ref huffcodeRef);
}
fixed (byte* huffValRef = this.HuffVal.Data)
{
var huffValSpan = new Span<byte>(huffValRef, 256);
values.CopyTo(huffValSpan);
}
}
/// <summary>
/// Figure C.1: make table of Huffman code length for each symbol
/// </summary>
/// <param name="lengths">The code lengths</param>
/// <param name="huffsizeRef">The huffman size span ref</param>
private static void GenerateSizeTable(ReadOnlySpan<byte> lengths, ref short huffsizeRef)
{
short index = 0;
for (short l = 1; l <= 16; l++)
{
byte i = lengths[l];
for (short j = 0; j < i; j++)
{
Unsafe.Add(ref huffsizeRef, index) = l;
index++;
}
}
Unsafe.Add(ref huffsizeRef, index) = 0;
}
/// <summary>
/// Figure C.2: generate the codes themselves
/// </summary>
/// <param name="huffsizeRef">The huffman size span ref</param>
/// <param name="huffcodeRef">The huffman code span ref</param>
/// <param name="length">The length of the huffsize span</param>
private static void GenerateCodeTable(ref short huffsizeRef, ref short huffcodeRef, int length)
{
short k = 0;
short si = huffsizeRef;
short code = 0;
for (short i = 0; i < length; i++)
{
while (Unsafe.Add(ref huffsizeRef, k) == si)
{
Unsafe.Add(ref huffcodeRef, k) = code;
code++;
k++;
}
code <<= 1;
si++;
}
}
/// <summary>
/// Figure F.15: generate decoding tables for bit-sequential decoding
/// </summary>
/// <param name="lengths">The code lengths</param>
/// <param name="huffcodeRef">The huffman code span ref</param>
private void GenerateDecoderTables(ReadOnlySpan<byte> lengths, ref short huffcodeRef)
{
fixed (short* valOffsetRef = this.ValOffset.Data)
fixed (long* maxcodeRef = this.MaxCode.Data)
{
short bitcount = 0;
for (int i = 1; i <= 16; i++)
// Figure C.1: make table of Huffman code length for each symbol
fixed (short* sizesRef = this.Sizes.Data)
{
if (lengths[i] != 0)
short x = 0;
for (short i = 1; i < 17; i++)
{
// valOffsetRef[l] = huffcodeRef[] index of 1st symbol of code length i, minus the minimum code of length i
valOffsetRef[i] = (short)(bitcount - Unsafe.Add(ref huffcodeRef, bitcount));
bitcount += lengths[i];
maxcodeRef[i] = Unsafe.Add(ref huffcodeRef, bitcount - 1); // maximum code of length i
}
else
{
maxcodeRef[i] = -1; // -1 if no codes of this length
byte l = count[i];
for (short j = 0; j < l; j++)
{
sizesRef[x] = i;
x++;
}
}
}
valOffsetRef[17] = 0;
maxcodeRef[17] = 0xFFFFFL;
}
}
sizesRef[x] = 0;
/// <summary>
/// Generates lookup tables to speed up decoding
/// </summary>
/// <param name="lengths">The code lengths</param>
/// <param name="huffval">The huffman value array</param>
/// <param name="huffcodeRef">The huffman code span ref</param>
private void GenerateLookaheadTables(ReadOnlySpan<byte> lengths, ReadOnlySpan<byte> huffval, ref short huffcodeRef)
{
// TODO: This generation code matches the libJpeg code but the lookahead table is not actually used yet.
// To use it we need to implement fast lookup path in PdfJsScanDecoder.DecodeHuffman
// This should yield much faster scan decoding as usually, more than 95% of the Huffman codes
// will be 8 or fewer bits long and can be handled without looping.
fixed (short* lookaheadRef = this.Lookahead.Data)
{
var lookaheadSpan = new Span<short>(lookaheadRef, 256);
// Figure C.2: generate the codes themselves
int k = 0;
fixed (int* valOffsetRef = this.ValOffset.Data)
fixed (uint* maxcodeRef = this.MaxCode.Data)
{
uint code = 0;
int j;
for (j = 1; j < 17; j++)
{
// Compute delta to add to code to compute symbol id.
valOffsetRef[j] = (int)(k - code);
if (sizesRef[k] == j)
{
while (sizesRef[k] == j)
{
Unsafe.Add(ref huffcodeRef, k++) = (short)code++;
}
}
// Figure F.15: generate decoding tables for bit-sequential decoding.
// Compute largest code + 1 for this size. preshifted as need later.
maxcodeRef[j] = code << (16 - j);
code <<= 1;
}
lookaheadSpan.Fill(2034); // 9 << 8;
maxcodeRef[j] = 0xFFFFFFFF;
}
int p = 0;
for (int l = 1; l <= 8; l++)
{
for (int i = 1; i <= lengths[l]; i++, p++)
// Generate non-spec lookup tables to speed up decoding.
fixed (byte* lookaheadRef = this.Lookahead.Data)
{
// l = current code's length, p = its index in huffcode[] & huffval[].
// Generate left-justified code followed by all possible bit sequences
int lookBits = Unsafe.Add(ref huffcodeRef, p) << (8 - l);
for (int ctr = 1 << (8 - l); ctr > 0; ctr--)
const int FastBits = ScanDecoder.FastBits;
var fast = new Span<byte>(lookaheadRef, 1 << FastBits);
fast.Fill(0xFF); // Flag for non-accelerated
for (int i = 0; i < k; i++)
{
lookaheadRef[lookBits] = (short)((l << 8) | huffval[p]);
lookBits++;
int s = sizesRef[i];
if (s <= ScanDecoder.FastBits)
{
int c = Unsafe.Add(ref huffcodeRef, i) << (FastBits - s);
int m = 1 << (FastBits - s);
for (int j = 0; j < m; j++)
{
fast[c + j] = (byte)i;
}
}
}
}
}
}
fixed (byte* huffValRef = this.Values.Data)
{
var huffValSpan = new Span<byte>(huffValRef, 256);
values.CopyTo(huffValSpan);
}
}
}
}

2
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsHuffmanTables.cs

@ -17,7 +17,7 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
/// Gets or sets the table at the given index.
/// </summary>
/// <param name="index">The index</param>
/// <returns>The <see cref="List{HuffmanBranch}"/></returns>
/// <returns>The <see cref="PdfJsHuffmanTable"/></returns>
public ref PdfJsHuffmanTable this[int index]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]

866
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsScanDecoder.cs

@ -1,866 +0,0 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using System;
#if DEBUG
using System.Diagnostics;
#endif
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using SixLabors.ImageSharp.Formats.Jpeg.Components;
using SixLabors.Memory;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
/// <summary>
/// Provides the means to decode a spectral scan
/// </summary>
internal struct PdfJsScanDecoder
{
private ZigZag dctZigZag;
private byte[] markerBuffer;
private int mcuToRead;
private int mcusPerLine;
private int mcu;
private int bitsData;
private int bitsCount;
private int specStart;
private int specEnd;
private int eobrun;
private int compIndex;
private int successiveState;
private int successiveACState;
private int successiveACNextValue;
private bool endOfStreamReached;
private bool unexpectedMarkerReached;
/// <summary>
/// Decodes the spectral scan
/// </summary>
/// <param name="frame">The image frame</param>
/// <param name="stream">The input stream</param>
/// <param name="dcHuffmanTables">The DC Huffman tables</param>
/// <param name="acHuffmanTables">The AC Huffman tables</param>
/// <param name="components">The scan components</param>
/// <param name="componentIndex">The component index within the array</param>
/// <param name="componentsLength">The length of the components. Different to the array length</param>
/// <param name="resetInterval">The reset interval</param>
/// <param name="spectralStart">The spectral selection start</param>
/// <param name="spectralEnd">The spectral selection end</param>
/// <param name="successivePrev">The successive approximation bit high end</param>
/// <param name="successive">The successive approximation bit low end</param>
public void DecodeScan(
PdfJsFrame frame,
DoubleBufferedStreamReader stream,
PdfJsHuffmanTables dcHuffmanTables,
PdfJsHuffmanTables acHuffmanTables,
PdfJsFrameComponent[] components,
int componentIndex,
int componentsLength,
ushort resetInterval,
int spectralStart,
int spectralEnd,
int successivePrev,
int successive)
{
this.dctZigZag = ZigZag.CreateUnzigTable();
this.markerBuffer = new byte[2];
this.compIndex = componentIndex;
this.specStart = spectralStart;
this.specEnd = spectralEnd;
this.successiveState = successive;
this.endOfStreamReached = false;
this.unexpectedMarkerReached = false;
bool progressive = frame.Progressive;
this.mcusPerLine = frame.McusPerLine;
this.mcu = 0;
int mcuExpected;
if (componentsLength == 1)
{
mcuExpected = components[this.compIndex].WidthInBlocks * components[this.compIndex].HeightInBlocks;
}
else
{
mcuExpected = this.mcusPerLine * frame.McusPerColumn;
}
while (this.mcu < mcuExpected)
{
// Reset interval stuff
this.mcuToRead = resetInterval != 0 ? Math.Min(mcuExpected - this.mcu, resetInterval) : mcuExpected;
for (int i = 0; i < components.Length; i++)
{
PdfJsFrameComponent c = components[i];
c.DcPredictor = 0;
}
this.eobrun = 0;
if (!progressive)
{
this.DecodeScanBaseline(dcHuffmanTables, acHuffmanTables, components, componentsLength, stream);
}
else
{
bool isAc = this.specStart != 0;
bool isFirst = successivePrev == 0;
PdfJsHuffmanTables huffmanTables = isAc ? acHuffmanTables : dcHuffmanTables;
this.DecodeScanProgressive(huffmanTables, isAc, isFirst, components, componentsLength, stream);
}
// Reset
// TODO: I do not understand why these values are reset? We should surely be tracking the bits across mcu's?
this.bitsCount = 0;
this.bitsData = 0;
this.unexpectedMarkerReached = false;
// Some images include more scan blocks than expected, skip past those and
// attempt to find the next valid marker
PdfJsFileMarker fileMarker = PdfJsJpegDecoderCore.FindNextFileMarker(this.markerBuffer, stream);
byte marker = fileMarker.Marker;
// RSTn - We've already read the bytes and altered the position so no need to skip
if (marker >= JpegConstants.Markers.RST0 && marker <= JpegConstants.Markers.RST7)
{
continue;
}
if (!fileMarker.Invalid)
{
// We've found a valid marker.
// Rewind the stream to the position of the marker and break
stream.Position = fileMarker.Position;
break;
}
#if DEBUG
Debug.WriteLine($"DecodeScan - Unexpected MCU data at {stream.Position}, next marker is: {fileMarker.Marker:X}");
#endif
}
}
private void DecodeScanBaseline(
PdfJsHuffmanTables dcHuffmanTables,
PdfJsHuffmanTables acHuffmanTables,
PdfJsFrameComponent[] components,
int componentsLength,
DoubleBufferedStreamReader stream)
{
if (componentsLength == 1)
{
PdfJsFrameComponent component = components[this.compIndex];
ref short blockDataRef = ref MemoryMarshal.GetReference(MemoryMarshal.Cast<Block8x8, short>(component.SpectralBlocks.GetSpan()));
ref PdfJsHuffmanTable dcHuffmanTable = ref dcHuffmanTables[component.DCHuffmanTableId];
ref PdfJsHuffmanTable acHuffmanTable = ref acHuffmanTables[component.ACHuffmanTableId];
for (int n = 0; n < this.mcuToRead; n++)
{
if (this.endOfStreamReached || this.unexpectedMarkerReached)
{
continue;
}
this.DecodeBlockBaseline(ref dcHuffmanTable, ref acHuffmanTable, component, ref blockDataRef, stream);
this.mcu++;
}
}
else
{
for (int n = 0; n < this.mcuToRead; n++)
{
for (int i = 0; i < componentsLength; i++)
{
PdfJsFrameComponent component = components[i];
ref short blockDataRef = ref MemoryMarshal.GetReference(MemoryMarshal.Cast<Block8x8, short>(component.SpectralBlocks.GetSpan()));
ref PdfJsHuffmanTable dcHuffmanTable = ref dcHuffmanTables[component.DCHuffmanTableId];
ref PdfJsHuffmanTable acHuffmanTable = ref acHuffmanTables[component.ACHuffmanTableId];
int h = component.HorizontalSamplingFactor;
int v = component.VerticalSamplingFactor;
for (int j = 0; j < v; j++)
{
for (int k = 0; k < h; k++)
{
if (this.endOfStreamReached || this.unexpectedMarkerReached)
{
continue;
}
this.DecodeMcuBaseline(ref dcHuffmanTable, ref acHuffmanTable, component, ref blockDataRef, j, k, stream);
}
}
}
this.mcu++;
}
}
}
private void DecodeScanProgressive(
PdfJsHuffmanTables huffmanTables,
bool isAC,
bool isFirst,
PdfJsFrameComponent[] components,
int componentsLength,
DoubleBufferedStreamReader stream)
{
if (componentsLength == 1)
{
PdfJsFrameComponent component = components[this.compIndex];
ref short blockDataRef = ref MemoryMarshal.GetReference(MemoryMarshal.Cast<Block8x8, short>(component.SpectralBlocks.GetSpan()));
ref PdfJsHuffmanTable huffmanTable = ref huffmanTables[isAC ? component.ACHuffmanTableId : component.DCHuffmanTableId];
for (int n = 0; n < this.mcuToRead; n++)
{
if (this.endOfStreamReached || this.unexpectedMarkerReached)
{
continue;
}
if (isAC)
{
if (isFirst)
{
this.DecodeBlockACFirst(ref huffmanTable, component, ref blockDataRef, stream);
}
else
{
this.DecodeBlockACSuccessive(ref huffmanTable, component, ref blockDataRef, stream);
}
}
else
{
if (isFirst)
{
this.DecodeBlockDCFirst(ref huffmanTable, component, ref blockDataRef, stream);
}
else
{
this.DecodeBlockDCSuccessive(component, ref blockDataRef, stream);
}
}
this.mcu++;
}
}
else
{
for (int n = 0; n < this.mcuToRead; n++)
{
for (int i = 0; i < componentsLength; i++)
{
PdfJsFrameComponent component = components[i];
ref short blockDataRef = ref MemoryMarshal.GetReference(MemoryMarshal.Cast<Block8x8, short>(component.SpectralBlocks.GetSpan()));
ref PdfJsHuffmanTable huffmanTable = ref huffmanTables[isAC ? component.ACHuffmanTableId : component.DCHuffmanTableId];
int h = component.HorizontalSamplingFactor;
int v = component.VerticalSamplingFactor;
for (int j = 0; j < v; j++)
{
for (int k = 0; k < h; k++)
{
// No need to continue here.
if (this.endOfStreamReached || this.unexpectedMarkerReached)
{
break;
}
if (isAC)
{
if (isFirst)
{
this.DecodeMcuACFirst(ref huffmanTable, component, ref blockDataRef, j, k, stream);
}
else
{
this.DecodeMcuACSuccessive(ref huffmanTable, component, ref blockDataRef, j, k, stream);
}
}
else
{
if (isFirst)
{
this.DecodeMcuDCFirst(ref huffmanTable, component, ref blockDataRef, j, k, stream);
}
else
{
this.DecodeMcuDCSuccessive(component, ref blockDataRef, j, k, stream);
}
}
}
}
}
this.mcu++;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeBlockBaseline(ref PdfJsHuffmanTable dcHuffmanTable, ref PdfJsHuffmanTable acHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, DoubleBufferedStreamReader stream)
{
int blockRow = this.mcu / component.WidthInBlocks;
int blockCol = this.mcu % component.WidthInBlocks;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeBaseline(component, ref blockDataRef, offset, ref dcHuffmanTable, ref acHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeMcuBaseline(ref PdfJsHuffmanTable dcHuffmanTable, ref PdfJsHuffmanTable acHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, int row, int col, DoubleBufferedStreamReader stream)
{
int mcuRow = this.mcu / this.mcusPerLine;
int mcuCol = this.mcu % this.mcusPerLine;
int blockRow = (mcuRow * component.VerticalSamplingFactor) + row;
int blockCol = (mcuCol * component.HorizontalSamplingFactor) + col;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeBaseline(component, ref blockDataRef, offset, ref dcHuffmanTable, ref acHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeBlockDCFirst(ref PdfJsHuffmanTable dcHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, DoubleBufferedStreamReader stream)
{
int blockRow = this.mcu / component.WidthInBlocks;
int blockCol = this.mcu % component.WidthInBlocks;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeDCFirst(component, ref blockDataRef, offset, ref dcHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeMcuDCFirst(ref PdfJsHuffmanTable dcHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, int row, int col, DoubleBufferedStreamReader stream)
{
int mcuRow = this.mcu / this.mcusPerLine;
int mcuCol = this.mcu % this.mcusPerLine;
int blockRow = (mcuRow * component.VerticalSamplingFactor) + row;
int blockCol = (mcuCol * component.HorizontalSamplingFactor) + col;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeDCFirst(component, ref blockDataRef, offset, ref dcHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeBlockDCSuccessive(PdfJsFrameComponent component, ref short blockDataRef, DoubleBufferedStreamReader stream)
{
int blockRow = this.mcu / component.WidthInBlocks;
int blockCol = this.mcu % component.WidthInBlocks;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeDCSuccessive(component, ref blockDataRef, offset, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeMcuDCSuccessive(PdfJsFrameComponent component, ref short blockDataRef, int row, int col, DoubleBufferedStreamReader stream)
{
int mcuRow = this.mcu / this.mcusPerLine;
int mcuCol = this.mcu % this.mcusPerLine;
int blockRow = (mcuRow * component.VerticalSamplingFactor) + row;
int blockCol = (mcuCol * component.HorizontalSamplingFactor) + col;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeDCSuccessive(component, ref blockDataRef, offset, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeBlockACFirst(ref PdfJsHuffmanTable acHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, DoubleBufferedStreamReader stream)
{
int blockRow = this.mcu / component.WidthInBlocks;
int blockCol = this.mcu % component.WidthInBlocks;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeACFirst(ref blockDataRef, offset, ref acHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeMcuACFirst(ref PdfJsHuffmanTable acHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, int row, int col, DoubleBufferedStreamReader stream)
{
int mcuRow = this.mcu / this.mcusPerLine;
int mcuCol = this.mcu % this.mcusPerLine;
int blockRow = (mcuRow * component.VerticalSamplingFactor) + row;
int blockCol = (mcuCol * component.HorizontalSamplingFactor) + col;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeACFirst(ref blockDataRef, offset, ref acHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeBlockACSuccessive(ref PdfJsHuffmanTable acHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, DoubleBufferedStreamReader stream)
{
int blockRow = this.mcu / component.WidthInBlocks;
int blockCol = this.mcu % component.WidthInBlocks;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeACSuccessive(ref blockDataRef, offset, ref acHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeMcuACSuccessive(ref PdfJsHuffmanTable acHuffmanTable, PdfJsFrameComponent component, ref short blockDataRef, int row, int col, DoubleBufferedStreamReader stream)
{
int mcuRow = this.mcu / this.mcusPerLine;
int mcuCol = this.mcu % this.mcusPerLine;
int blockRow = (mcuRow * component.VerticalSamplingFactor) + row;
int blockCol = (mcuCol * component.HorizontalSamplingFactor) + col;
int offset = component.GetBlockBufferOffset(blockRow, blockCol);
this.DecodeACSuccessive(ref blockDataRef, offset, ref acHuffmanTable, stream);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool TryReadBit(DoubleBufferedStreamReader stream, out int bit)
{
if (this.bitsCount == 0)
{
if (!this.TryFillBits(stream))
{
bit = 0;
return false;
}
}
this.bitsCount--;
bit = (this.bitsData >> this.bitsCount) & 1;
return true;
}
[MethodImpl(MethodImplOptions.NoInlining)]
private bool TryFillBits(DoubleBufferedStreamReader stream)
{
// TODO: Read more then 1 byte at a time.
// In LibJpegTurbo this is be 25 bits (32-7) but I cannot get this to work
// for some images, I'm assuming because I am crossing MCU boundaries and not maintining the correct buffer state.
const int MinGetBits = 7;
if (!this.unexpectedMarkerReached)
{
// Attempt to load to the minimum bit count.
while (this.bitsCount < MinGetBits)
{
int c = stream.ReadByte();
switch (c)
{
case -0x1:
// We've encountered the end of the file stream which means there's no EOI marker in the image.
this.endOfStreamReached = true;
return false;
case JpegConstants.Markers.XFF:
int nextByte = stream.ReadByte();
if (nextByte == -0x1)
{
this.endOfStreamReached = true;
return false;
}
if (nextByte != 0)
{
#if DEBUG
Debug.WriteLine($"DecodeScan - Unexpected marker {(c << 8) | nextByte:X} at {stream.Position}");
#endif
// We've encountered an unexpected marker. Reverse the stream and exit.
this.unexpectedMarkerReached = true;
stream.Position -= 2;
// TODO: double check we need this.
// Fill buffer with zero bits.
if (this.bitsCount == 0)
{
this.bitsData <<= MinGetBits;
this.bitsCount = MinGetBits;
}
return true;
}
break;
}
// OK, load the next byte into bitsData
this.bitsData = (this.bitsData << 8) | c;
this.bitsCount += 8;
}
}
return true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private int PeekBits(int count)
{
return this.bitsData >> (this.bitsCount - count) & ((1 << count) - 1);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DropBits(int count)
{
this.bitsCount -= count;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool TryDecodeHuffman(ref PdfJsHuffmanTable tree, DoubleBufferedStreamReader stream, out short value)
{
value = -1;
// TODO: Implement fast Huffman decoding.
// In LibJpegTurbo a minimum of 25 bits (32-7) is collected from the stream
// Then a LUT is used to avoid the loop when decoding the Huffman value.
// using 3 methods: FillBits, PeekBits, and DropBits.
// The LUT has been ported from LibJpegTurbo as has this code but it doesn't work.
// this.TryFillBits(stream);
//
// const int LookAhead = 8;
// int look = this.PeekBits(LookAhead);
// look = tree.Lookahead[look];
// int bits = look >> LookAhead;
//
// if (bits <= LookAhead)
// {
// this.DropBits(bits);
// value = (short)(look & ((1 << LookAhead) - 1));
// return true;
// }
if (!this.TryReadBit(stream, out int bit))
{
return false;
}
short code = (short)bit;
// "DECODE", section F.2.2.3, figure F.16, page 109 of T.81
int i = 1;
while (code > tree.MaxCode[i])
{
if (!this.TryReadBit(stream, out bit))
{
return false;
}
code <<= 1;
code |= (short)bit;
i++;
}
int j = tree.ValOffset[i];
value = tree.HuffVal[(j + code) & 0xFF];
return true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool TryReceive(int length, DoubleBufferedStreamReader stream, out int value)
{
value = 0;
while (length > 0)
{
if (!this.TryReadBit(stream, out int bit))
{
return false;
}
value = (value << 1) | bit;
length--;
}
return true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool TryReceiveAndExtend(int length, DoubleBufferedStreamReader stream, out int value)
{
if (length == 1)
{
if (!this.TryReadBit(stream, out value))
{
return false;
}
value = value == 1 ? 1 : -1;
}
else
{
if (!this.TryReceive(length, stream, out value))
{
return false;
}
if (value < 1 << (length - 1))
{
value += (-1 << length) + 1;
}
}
return true;
}
private void DecodeBaseline(PdfJsFrameComponent component, ref short blockDataRef, int offset, ref PdfJsHuffmanTable dcHuffmanTable, ref PdfJsHuffmanTable acHuffmanTable, DoubleBufferedStreamReader stream)
{
if (!this.TryDecodeHuffman(ref dcHuffmanTable, stream, out short t))
{
return;
}
int diff = 0;
if (t != 0)
{
if (!this.TryReceiveAndExtend(t, stream, out diff))
{
return;
}
}
Unsafe.Add(ref blockDataRef, offset) = (short)(component.DcPredictor += diff);
int k = 1;
while (k < 64)
{
if (!this.TryDecodeHuffman(ref acHuffmanTable, stream, out short rs))
{
return;
}
int s = rs & 15;
int r = rs >> 4;
if (s == 0)
{
if (r < 15)
{
break;
}
k += 16;
continue;
}
k += r;
byte z = this.dctZigZag[k];
if (!this.TryReceiveAndExtend(s, stream, out int re))
{
return;
}
Unsafe.Add(ref blockDataRef, offset + z) = (short)re;
k++;
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeDCFirst(PdfJsFrameComponent component, ref short blockDataRef, int offset, ref PdfJsHuffmanTable dcHuffmanTable, DoubleBufferedStreamReader stream)
{
if (!this.TryDecodeHuffman(ref dcHuffmanTable, stream, out short t))
{
return;
}
int diff = 0;
if (t != 0)
{
if (!this.TryReceiveAndExtend(t, stream, out diff))
{
return;
}
}
Unsafe.Add(ref blockDataRef, offset) = (short)(component.DcPredictor += diff << this.successiveState);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private void DecodeDCSuccessive(PdfJsFrameComponent component, ref short blockDataRef, int offset, DoubleBufferedStreamReader stream)
{
if (!this.TryReadBit(stream, out int bit))
{
return;
}
Unsafe.Add(ref blockDataRef, offset) |= (short)(bit << this.successiveState);
}
private void DecodeACFirst(ref short blockDataRef, int offset, ref PdfJsHuffmanTable acHuffmanTable, DoubleBufferedStreamReader stream)
{
if (this.eobrun > 0)
{
this.eobrun--;
return;
}
int k = this.specStart;
int e = this.specEnd;
while (k <= e)
{
if (!this.TryDecodeHuffman(ref acHuffmanTable, stream, out short rs))
{
return;
}
int s = rs & 15;
int r = rs >> 4;
if (s == 0)
{
if (r < 15)
{
if (!this.TryReceive(r, stream, out int eob))
{
return;
}
this.eobrun = eob + (1 << r) - 1;
break;
}
k += 16;
continue;
}
k += r;
byte z = this.dctZigZag[k];
if (!this.TryReceiveAndExtend(s, stream, out int v))
{
return;
}
Unsafe.Add(ref blockDataRef, offset + z) = (short)(v * (1 << this.successiveState));
k++;
}
}
private void DecodeACSuccessive(ref short blockDataRef, int offset, ref PdfJsHuffmanTable acHuffmanTable, DoubleBufferedStreamReader stream)
{
int k = this.specStart;
int e = this.specEnd;
int r = 0;
while (k <= e)
{
int offsetZ = offset + this.dctZigZag[k];
ref short blockOffsetZRef = ref Unsafe.Add(ref blockDataRef, offsetZ);
int sign = blockOffsetZRef < 0 ? -1 : 1;
switch (this.successiveACState)
{
case 0: // Initial state
if (!this.TryDecodeHuffman(ref acHuffmanTable, stream, out short rs))
{
return;
}
int s = rs & 15;
r = rs >> 4;
if (s == 0)
{
if (r < 15)
{
if (!this.TryReceive(r, stream, out int eob))
{
return;
}
this.eobrun = eob + (1 << r);
this.successiveACState = 4;
}
else
{
r = 16;
this.successiveACState = 1;
}
}
else
{
if (s != 1)
{
throw new ImageFormatException("Invalid ACn encoding");
}
if (!this.TryReceiveAndExtend(s, stream, out int v))
{
return;
}
this.successiveACNextValue = v;
this.successiveACState = r > 0 ? 2 : 3;
}
continue;
case 1: // Skipping r zero items
case 2:
if (blockOffsetZRef != 0)
{
if (!this.TryReadBit(stream, out int bit))
{
return;
}
blockOffsetZRef += (short)(sign * (bit << this.successiveState));
}
else
{
r--;
if (r == 0)
{
this.successiveACState = this.successiveACState == 2 ? 3 : 0;
}
}
break;
case 3: // Set value for a zero item
if (blockOffsetZRef != 0)
{
if (!this.TryReadBit(stream, out int bit))
{
return;
}
blockOffsetZRef += (short)(sign * (bit << this.successiveState));
}
else
{
blockOffsetZRef = (short)(this.successiveACNextValue << this.successiveState);
this.successiveACState = 0;
}
break;
case 4: // Eob
if (blockOffsetZRef != 0)
{
if (!this.TryReadBit(stream, out int bit))
{
return;
}
blockOffsetZRef += (short)(sign * (bit << this.successiveState));
}
break;
}
k++;
}
if (this.successiveACState == 4)
{
this.eobrun--;
if (this.eobrun == 0)
{
this.successiveACState = 0;
}
}
}
}
}

958
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/ScanDecoder.cs

@ -0,0 +1,958 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using SixLabors.ImageSharp.Formats.Jpeg.Components;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
{
/// <summary>
/// Decodes the Huffman encoded spectral scan.
/// Originally ported from <see href="https://github.com/rds1983/StbSharp"/>
/// with additional fixes for both performance and common encoding errors.
/// </summary>
internal class ScanDecoder
{
// The number of bits that can be read via a LUT.
public const int FastBits = 9;
// LUT mask for n rightmost bits. Bmask[n] = (1 << n) - 1
private static readonly uint[] Bmask = { 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535 };
// LUT Bias[n] = (-1 << n) + 1
private static readonly int[] Bias = { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 };
private readonly PdfJsFrame frame;
private readonly PdfJsHuffmanTables dcHuffmanTables;
private readonly PdfJsHuffmanTables acHuffmanTables;
private readonly FastACTables fastACTables;
private readonly DoubleBufferedStreamReader stream;
private readonly PdfJsFrameComponent[] components;
private readonly ZigZag dctZigZag;
// The restart interval.
private readonly int restartInterval;
// The current component index.
private readonly int componentIndex;
// The number of interleaved components.
private readonly int componentsLength;
// The spectral selection start.
private readonly int spectralStart;
// The spectral selection end.
private readonly int spectralEnd;
// The successive approximation high bit end.
private readonly int successiveHigh;
// The successive approximation low bit end.
private readonly int successiveLow;
// The number of valid bits left to read in the buffer.
private int codeBits;
// The entropy encoded code buffer.
private uint codeBuffer;
// Whether there is more data to pull from the stream for the current mcu.
private bool nomore;
// Whether we have prematurely reached the end of the file.
private bool eof;
// The current, if any, marker in the input stream.
private byte marker;
// Whether we have a bad marker, I.E. One that is not between RST0 and RST7
private bool badMarker;
// The opening position of an identified marker.
private long markerPosition;
// How many mcu's are left to do.
private int todo;
// The End-Of-Block countdown for ending the sequence prematurely when the remaining coefficients are zero.
private int eobrun;
/// <summary>
/// Initializes a new instance of the <see cref="ScanDecoder"/> class.
/// </summary>
/// <param name="stream">The input stream.</param>
/// <param name="frame">The image frame.</param>
/// <param name="dcHuffmanTables">The DC Huffman tables.</param>
/// <param name="acHuffmanTables">The AC Huffman tables.</param>
/// <param name="fastACTables">The fast AC decoding tables.</param>
/// <param name="componentIndex">The component index within the array.</param>
/// <param name="componentsLength">The length of the components. Different to the array length.</param>
/// <param name="restartInterval">The reset interval.</param>
/// <param name="spectralStart">The spectral selection start.</param>
/// <param name="spectralEnd">The spectral selection end.</param>
/// <param name="successiveHigh">The successive approximation bit high end.</param>
/// <param name="successiveLow">The successive approximation bit low end.</param>
public ScanDecoder(
DoubleBufferedStreamReader stream,
PdfJsFrame frame,
PdfJsHuffmanTables dcHuffmanTables,
PdfJsHuffmanTables acHuffmanTables,
FastACTables fastACTables,
int componentIndex,
int componentsLength,
int restartInterval,
int spectralStart,
int spectralEnd,
int successiveHigh,
int successiveLow)
{
this.dctZigZag = ZigZag.CreateUnzigTable();
this.stream = stream;
this.frame = frame;
this.dcHuffmanTables = dcHuffmanTables;
this.acHuffmanTables = acHuffmanTables;
this.fastACTables = fastACTables;
this.components = frame.Components;
this.marker = JpegConstants.Markers.XFF;
this.markerPosition = 0;
this.componentIndex = componentIndex;
this.componentsLength = componentsLength;
this.restartInterval = restartInterval;
this.spectralStart = spectralStart;
this.spectralEnd = spectralEnd;
this.successiveHigh = successiveHigh;
this.successiveLow = successiveLow;
}
/// <summary>
/// Decodes the entropy coded data.
/// </summary>
public void ParseEntropyCodedData()
{
this.Reset();
if (!this.frame.Progressive)
{
this.ParseBaselineData();
}
else
{
this.ParseProgressiveData();
}
if (this.badMarker)
{
this.stream.Position = this.markerPosition;
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint LRot(uint x, int y) => (x << y) | (x >> (32 - y));
private void ParseBaselineData()
{
if (this.componentsLength == 1)
{
this.ParseBaselineDataNonInterleaved();
}
else
{
this.ParseBaselineDataInterleaved();
}
}
private void ParseBaselineDataInterleaved()
{
// Interleaved
int mcu = 0;
int mcusPerColumn = this.frame.McusPerColumn;
int mcusPerLine = this.frame.McusPerLine;
for (int j = 0; j < mcusPerColumn; j++)
{
for (int i = 0; i < mcusPerLine; i++)
{
// Scan an interleaved mcu... process components in order
for (int k = 0; k < this.componentsLength; k++)
{
PdfJsFrameComponent component = this.components[k];
ref PdfJsHuffmanTable dcHuffmanTable = ref this.dcHuffmanTables[component.DCHuffmanTableId];
ref PdfJsHuffmanTable acHuffmanTable = ref this.acHuffmanTables[component.ACHuffmanTableId];
ref short fastACRef = ref this.fastACTables.GetAcTableReference(component);
int h = component.HorizontalSamplingFactor;
int v = component.VerticalSamplingFactor;
// Scan out an mcu's worth of this component; that's just determined
// by the basic H and V specified for the component
for (int y = 0; y < v; y++)
{
for (int x = 0; x < h; x++)
{
if (this.eof)
{
return;
}
int mcuRow = mcu / mcusPerLine;
int mcuCol = mcu % mcusPerLine;
int blockRow = (mcuRow * v) + y;
int blockCol = (mcuCol * h) + x;
this.DecodeBlockBaseline(
component,
blockRow,
blockCol,
ref dcHuffmanTable,
ref acHuffmanTable,
ref fastACRef);
}
}
}
// After all interleaved components, that's an interleaved MCU,
// so now count down the restart interval
mcu++;
if (!this.ContinueOnMcuComplete())
{
return;
}
}
}
}
/// <summary>
/// Non-interleaved data, we just need to process one block at a ti
/// in trivial scanline order
/// number of blocks to do just depends on how many actual "pixels"
/// component has, independent of interleaved MCU blocking and such
/// </summary>
private void ParseBaselineDataNonInterleaved()
{
PdfJsFrameComponent component = this.components[this.componentIndex];
int w = component.WidthInBlocks;
int h = component.HeightInBlocks;
ref PdfJsHuffmanTable dcHuffmanTable = ref this.dcHuffmanTables[component.DCHuffmanTableId];
ref PdfJsHuffmanTable acHuffmanTable = ref this.acHuffmanTables[component.ACHuffmanTableId];
ref short fastACRef = ref this.fastACTables.GetAcTableReference(component);
int mcu = 0;
for (int j = 0; j < h; j++)
{
for (int i = 0; i < w; i++)
{
if (this.eof)
{
return;
}
int blockRow = mcu / w;
int blockCol = mcu % w;
this.DecodeBlockBaseline(
component,
blockRow,
blockCol,
ref dcHuffmanTable,
ref acHuffmanTable,
ref fastACRef);
// Every data block is an MCU, so countdown the restart interval
mcu++;
if (!this.ContinueOnMcuComplete())
{
return;
}
}
}
}
private void ParseProgressiveData()
{
if (this.componentsLength == 1)
{
this.ParseProgressiveDataNonInterleaved();
}
else
{
this.ParseProgressiveDataInterleaved();
}
}
private void ParseProgressiveDataInterleaved()
{
// Interleaved
int mcu = 0;
int mcusPerColumn = this.frame.McusPerColumn;
int mcusPerLine = this.frame.McusPerLine;
for (int j = 0; j < mcusPerColumn; j++)
{
for (int i = 0; i < mcusPerLine; i++)
{
// Scan an interleaved mcu... process components in order
for (int k = 0; k < this.componentsLength; k++)
{
PdfJsFrameComponent component = this.components[k];
ref PdfJsHuffmanTable dcHuffmanTable = ref this.dcHuffmanTables[component.DCHuffmanTableId];
int h = component.HorizontalSamplingFactor;
int v = component.VerticalSamplingFactor;
// Scan out an mcu's worth of this component; that's just determined
// by the basic H and V specified for the component
for (int y = 0; y < v; y++)
{
for (int x = 0; x < h; x++)
{
if (this.eof)
{
return;
}
int mcuRow = mcu / mcusPerLine;
int mcuCol = mcu % mcusPerLine;
int blockRow = (mcuRow * v) + y;
int blockCol = (mcuCol * h) + x;
this.DecodeBlockProgressiveDC(
component,
blockRow,
blockCol,
ref dcHuffmanTable);
}
}
}
// After all interleaved components, that's an interleaved MCU,
// so now count down the restart interval
mcu++;
if (!this.ContinueOnMcuComplete())
{
return;
}
}
}
}
/// <summary>
/// Non-interleaved data, we just need to process one block at a time,
/// in trivial scanline order
/// number of blocks to do just depends on how many actual "pixels" this
/// component has, independent of interleaved MCU blocking and such
/// </summary>
private void ParseProgressiveDataNonInterleaved()
{
PdfJsFrameComponent component = this.components[this.componentIndex];
int w = component.WidthInBlocks;
int h = component.HeightInBlocks;
ref PdfJsHuffmanTable dcHuffmanTable = ref this.dcHuffmanTables[component.DCHuffmanTableId];
ref PdfJsHuffmanTable acHuffmanTable = ref this.acHuffmanTables[component.ACHuffmanTableId];
ref short fastACRef = ref this.fastACTables.GetAcTableReference(component);
int mcu = 0;
for (int j = 0; j < h; j++)
{
for (int i = 0; i < w; i++)
{
if (this.eof)
{
return;
}
int blockRow = mcu / w;
int blockCol = mcu % w;
if (this.spectralStart == 0)
{
this.DecodeBlockProgressiveDC(
component,
blockRow,
blockCol,
ref dcHuffmanTable);
}
else
{
this.DecodeBlockProgressiveAC(
component,
blockRow,
blockCol,
ref acHuffmanTable,
ref fastACRef);
}
// Every data block is an MCU, so countdown the restart interval
mcu++;
if (!this.ContinueOnMcuComplete())
{
return;
}
}
}
}
private void DecodeBlockBaseline(
PdfJsFrameComponent component,
int row,
int col,
ref PdfJsHuffmanTable dcTable,
ref PdfJsHuffmanTable acTable,
ref short fastACRef)
{
this.CheckBits();
int t = this.DecodeHuffman(ref dcTable);
if (t < 0)
{
JpegThrowHelper.ThrowBadHuffmanCode();
}
ref short blockDataRef = ref component.GetBlockDataReference(row, col);
int diff = t != 0 ? this.ExtendReceive(t) : 0;
int dc = component.DcPredictor + diff;
component.DcPredictor = dc;
blockDataRef = (short)dc;
// Decode AC Components, See Jpeg Spec
int k = 1;
do
{
int zig;
int s;
this.CheckBits();
int c = this.PeekBits();
int r = Unsafe.Add(ref fastACRef, c);
if (r != 0)
{
// Fast AC path
k += (r >> 4) & 15; // Run
s = r & 15; // Combined Length
this.codeBuffer <<= s;
this.codeBits -= s;
// Decode into unzigzag location
zig = this.dctZigZag[k++];
Unsafe.Add(ref blockDataRef, zig) = (short)(r >> 8);
}
else
{
int rs = this.DecodeHuffman(ref acTable);
if (rs < 0)
{
JpegThrowHelper.ThrowBadHuffmanCode();
}
s = rs & 15;
r = rs >> 4;
if (s == 0)
{
if (rs != 0xF0)
{
break; // End block
}
k += 16;
}
else
{
k += r;
// Decode into unzigzag location
zig = this.dctZigZag[k++];
Unsafe.Add(ref blockDataRef, zig) = (short)this.ExtendReceive(s);
}
}
} while (k < 64);
}
private void DecodeBlockProgressiveDC(
PdfJsFrameComponent component,
int row,
int col,
ref PdfJsHuffmanTable dcTable)
{
if (this.spectralEnd != 0)
{
JpegThrowHelper.ThrowImageFormatException("Can't merge DC and AC.");
}
this.CheckBits();
ref short blockDataRef = ref component.GetBlockDataReference(row, col);
if (this.successiveHigh == 0)
{
// First scan for DC coefficient, must be first
int t = this.DecodeHuffman(ref dcTable);
int diff = t != 0 ? this.ExtendReceive(t) : 0;
int dc = component.DcPredictor + diff;
component.DcPredictor = dc;
blockDataRef = (short)(dc << this.successiveLow);
}
else
{
// Refinement scan for DC coefficient
if (this.GetBit() != 0)
{
blockDataRef += (short)(1 << this.successiveLow);
}
}
}
private void DecodeBlockProgressiveAC(
PdfJsFrameComponent component,
int row,
int col,
ref PdfJsHuffmanTable acTable,
ref short fastACRef)
{
if (this.spectralStart == 0)
{
JpegThrowHelper.ThrowImageFormatException("Can't merge DC and AC.");
}
ref short blockDataRef = ref component.GetBlockDataReference(row, col);
if (this.successiveHigh == 0)
{
// MCU decoding for AC initial scan (either spectral selection,
// or first pass of successive approximation).
int shift = this.successiveLow;
if (this.eobrun != 0)
{
this.eobrun--;
return;
}
int k = this.spectralStart;
do
{
int zig;
int s;
this.CheckBits();
int c = this.PeekBits();
int r = Unsafe.Add(ref fastACRef, c);
if (r != 0)
{
// Fast AC path
k += (r >> 4) & 15; // Run
s = r & 15; // Combined length
this.codeBuffer <<= s;
this.codeBits -= s;
// Decode into unzigzag location
zig = this.dctZigZag[k++];
Unsafe.Add(ref blockDataRef, zig) = (short)((r >> 8) << shift);
}
else
{
int rs = this.DecodeHuffman(ref acTable);
if (rs < 0)
{
JpegThrowHelper.ThrowBadHuffmanCode();
}
s = rs & 15;
r = rs >> 4;
if (s == 0)
{
if (r < 15)
{
this.eobrun = 1 << r;
if (r != 0)
{
this.eobrun += this.GetBits(r);
}
this.eobrun--;
break;
}
k += 16;
}
else
{
k += r;
zig = this.dctZigZag[k++];
Unsafe.Add(ref blockDataRef, zig) = (short)(this.ExtendReceive(s) << shift);
}
}
}
while (k <= this.spectralEnd);
}
else
{
// Refinement scan for these AC coefficients
this.DecodeBlockProgressiveACRefined(ref blockDataRef, ref acTable);
}
}
private void DecodeBlockProgressiveACRefined(ref short blockDataRef, ref PdfJsHuffmanTable acTable)
{
int k;
// Refinement scan for these AC coefficients
short bit = (short)(1 << this.successiveLow);
if (this.eobrun != 0)
{
this.eobrun--;
for (k = this.spectralStart; k <= this.spectralEnd; k++)
{
ref short p = ref Unsafe.Add(ref blockDataRef, this.dctZigZag[k]);
if (p != 0)
{
if (this.GetBit() != 0)
{
if ((p & bit) == 0)
{
if (p > 0)
{
p += bit;
}
else
{
p -= bit;
}
}
}
}
}
}
else
{
k = this.spectralStart;
do
{
int rs = this.DecodeHuffman(ref acTable);
if (rs < 0)
{
JpegThrowHelper.ThrowBadHuffmanCode();
}
int s = rs & 15;
int r = rs >> 4;
if (s == 0)
{
// r=15 s=0 should write 16 0s, so we just do
// a run of 15 0s and then write s (which is 0),
// so we don't have to do anything special here
if (r < 15)
{
this.eobrun = (1 << r) - 1;
if (r != 0)
{
this.eobrun += this.GetBits(r);
}
r = 64; // Force end of block
}
}
else
{
if (s != 1)
{
JpegThrowHelper.ThrowBadHuffmanCode();
}
// Sign bit
if (this.GetBit() != 0)
{
s = bit;
}
else
{
s = -bit;
}
}
// Advance by r
while (k <= this.spectralEnd)
{
ref short p = ref Unsafe.Add(ref blockDataRef, this.dctZigZag[k++]);
if (p != 0)
{
if (this.GetBit() != 0)
{
if ((p & bit) == 0)
{
if (p > 0)
{
p += bit;
}
else
{
p -= bit;
}
}
}
}
else
{
if (r == 0)
{
p = (short)s;
break;
}
r--;
}
}
}
while (k <= this.spectralEnd);
}
}
[MethodImpl(InliningOptions.ShortMethod)]
private int GetBits(int n)
{
if (this.codeBits < n)
{
this.FillBuffer();
}
uint k = LRot(this.codeBuffer, n);
this.codeBuffer = k & ~Bmask[n];
k &= Bmask[n];
this.codeBits -= n;
return (int)k;
}
[MethodImpl(InliningOptions.ShortMethod)]
private int GetBit()
{
if (this.codeBits < 1)
{
this.FillBuffer();
}
uint k = this.codeBuffer;
this.codeBuffer <<= 1;
this.codeBits--;
return (int)(k & 0x80000000);
}
[MethodImpl(InliningOptions.ColdPath)]
private void FillBuffer()
{
// Attempt to load at least the minimum nbumber of required bits into the buffer.
// We fail to do so only if we hit a marker or reach the end of the input stream.
do
{
int b = this.nomore ? 0 : this.stream.ReadByte();
if (b == -1)
{
// We've encountered the end of the file stream which means there's no EOI marker in the image
// or the SOS marker has the wrong dimensions set.
this.eof = true;
b = 0;
}
// Found a marker.
if (b == JpegConstants.Markers.XFF)
{
this.markerPosition = this.stream.Position - 1;
int c = this.stream.ReadByte();
while (c == JpegConstants.Markers.XFF)
{
c = this.stream.ReadByte();
if (c == -1)
{
this.eof = true;
c = 0;
break;
}
}
if (c != 0)
{
this.marker = (byte)c;
this.nomore = true;
if (!this.HasRestart())
{
this.badMarker = true;
}
return;
}
}
this.codeBuffer |= (uint)b << (24 - this.codeBits);
this.codeBits += 8;
}
while (this.codeBits <= 24);
}
[MethodImpl(InliningOptions.ShortMethod)]
private int DecodeHuffman(ref PdfJsHuffmanTable table)
{
this.CheckBits();
// Look at the top FastBits and determine what symbol ID it is,
// if the code is <= FastBits.
int c = this.PeekBits();
int k = table.Lookahead[c];
if (k < 0xFF)
{
int s = table.Sizes[k];
if (s > this.codeBits)
{
return -1;
}
this.codeBuffer <<= s;
this.codeBits -= s;
return table.Values[k];
}
return this.DecodeHuffmanSlow(ref table);
}
[MethodImpl(InliningOptions.ColdPath)]
private int DecodeHuffmanSlow(ref PdfJsHuffmanTable table)
{
// Naive test is to shift the code_buffer down so k bits are
// valid, then test against MaxCode. To speed this up, we've
// preshifted maxcode left so that it has (16-k) 0s at the
// end; in other words, regardless of the number of bits, it
// wants to be compared against something shifted to have 16;
// that way we don't need to shift inside the loop.
uint temp = this.codeBuffer >> 16;
int k;
for (k = FastBits + 1; ; k++)
{
if (temp < table.MaxCode[k])
{
break;
}
}
if (k == 17)
{
// Error! code not found
this.codeBits -= 16;
return -1;
}
if (k > this.codeBits)
{
return -1;
}
// Convert the huffman code to the symbol id
int c = (int)(((this.codeBuffer >> (32 - k)) & Bmask[k]) + table.ValOffset[k]);
// Convert the id to a symbol
this.codeBits -= k;
this.codeBuffer <<= k;
return table.Values[c];
}
[MethodImpl(InliningOptions.ShortMethod)]
private int ExtendReceive(int n)
{
if (this.codeBits < n)
{
this.FillBuffer();
}
int sgn = (int)this.codeBuffer >> 31;
uint k = LRot(this.codeBuffer, n);
this.codeBuffer = k & ~Bmask[n];
k &= Bmask[n];
this.codeBits -= n;
return (int)(k + (Bias[n] & ~sgn));
}
[MethodImpl(InliningOptions.ShortMethod)]
private void CheckBits()
{
if (this.codeBits < 16)
{
this.FillBuffer();
}
}
[MethodImpl(InliningOptions.ShortMethod)]
private int PeekBits() => (int)((this.codeBuffer >> (32 - FastBits)) & ((1 << FastBits) - 1));
[MethodImpl(InliningOptions.ShortMethod)]
private bool ContinueOnMcuComplete()
{
if (--this.todo > 0)
{
return true;
}
if (this.codeBits < 24)
{
this.FillBuffer();
}
// If it's NOT a restart, then just bail, so we get corrupt data rather than no data.
// Reset the stream to before any bad markers to ensure we can read sucessive segments.
if (this.badMarker)
{
this.stream.Position = this.markerPosition;
}
if (!this.HasRestart())
{
return false;
}
this.Reset();
return true;
}
[MethodImpl(InliningOptions.ShortMethod)]
private bool HasRestart()
{
byte m = this.marker;
return m >= JpegConstants.Markers.RST0 && m <= JpegConstants.Markers.RST7;
}
private void Reset()
{
this.codeBits = 0;
this.codeBuffer = 0;
for (int i = 0; i < this.components.Length; i++)
{
PdfJsFrameComponent c = this.components[i];
c.DcPredictor = 0;
}
this.nomore = false;
this.marker = JpegConstants.Markers.XFF;
this.markerPosition = 0;
this.badMarker = false;
this.eobrun = 0;
// No more than 1<<31 MCUs if no restartInterval? that's plenty safe since we don't even allow 1<<30 pixels
this.todo = this.restartInterval > 0 ? this.restartInterval : int.MaxValue;
}
}
}

57
src/ImageSharp/Formats/Jpeg/PdfJsPort/PdfJsJpegDecoderCore.cs

@ -58,6 +58,11 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
/// </summary>
private PdfJsHuffmanTables acHuffmanTables;
/// <summary>
/// The fast AC tables used for entropy decoding
/// </summary>
private FastACTables fastACTables;
/// <summary>
/// The reset interval determined by RST markers
/// </summary>
@ -239,6 +244,7 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
this.QuantizationTables = new Block8x8F[4];
this.dcHuffmanTables = new PdfJsHuffmanTables();
this.acHuffmanTables = new PdfJsHuffmanTables();
this.fastACTables = new FastACTables(this.configuration.MemoryAllocator);
}
while (fileMarker.Marker != JpegConstants.Markers.EOI)
@ -353,12 +359,14 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
{
this.InputStream?.Dispose();
this.Frame?.Dispose();
this.fastACTables?.Dispose();
// Set large fields to null.
this.InputStream = null;
this.Frame = null;
this.dcHuffmanTables = null;
this.acHuffmanTables = null;
this.fastACTables = null;
}
/// <summary>
@ -723,11 +731,20 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
i += 17 + codeLengthSum;
int tableType = huffmanTableSpec >> 4;
int tableIndex = huffmanTableSpec & 15;
this.BuildHuffmanTable(
huffmanTableSpec >> 4 == 0 ? this.dcHuffmanTables : this.acHuffmanTables,
huffmanTableSpec & 15,
tableType == 0 ? this.dcHuffmanTables : this.acHuffmanTables,
tableIndex,
codeLengths.GetSpan(),
huffmanValues.GetSpan());
if (huffmanTableSpec >> 4 != 0)
{
// Build a table that decodes both magnitude and value of small ACs in one go.
this.fastACTables.BuildACTableLut(huffmanTableSpec & 15, this.acHuffmanTables);
}
}
}
}
@ -786,21 +803,22 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
int spectralStart = this.temp[0];
int spectralEnd = this.temp[1];
int successiveApproximation = this.temp[2];
PdfJsScanDecoder scanDecoder = default;
scanDecoder.DecodeScan(
this.Frame,
this.InputStream,
this.dcHuffmanTables,
this.acHuffmanTables,
this.Frame.Components,
componentIndex,
selectorsCount,
this.resetInterval,
spectralStart,
spectralEnd,
successiveApproximation >> 4,
successiveApproximation & 15);
var sd = new ScanDecoder(
this.InputStream,
this.Frame,
this.dcHuffmanTables,
this.acHuffmanTables,
this.fastACTables,
componentIndex,
selectorsCount,
this.resetInterval,
spectralStart,
spectralEnd,
successiveApproximation >> 4,
successiveApproximation & 15);
sd.ParseEntropyCodedData();
}
/// <summary>
@ -827,6 +845,11 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
return BinaryPrimitives.ReadUInt16BigEndian(this.markerBuffer);
}
/// <summary>
/// Post processes the pixels into the destination image.
/// </summary>
/// <typeparam name="TPixel">The pixel format.</typeparam>
/// <returns>The <see cref="Image{TPixel}"/>.</returns>
private Image<TPixel> PostProcessIntoImage<TPixel>()
where TPixel : struct, IPixel<TPixel>
{

52
tests/ImageSharp.Benchmarks/Codecs/Jpeg/DecodeJpegParseStreamOnly.cs

@ -0,0 +1,52 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using BenchmarkDotNet.Attributes;
using System.Drawing;
using System.IO;
using SixLabors.ImageSharp.Formats.Jpeg;
using SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort;
using SixLabors.ImageSharp.Tests;
namespace SixLabors.ImageSharp.Benchmarks.Codecs.Jpeg
{
[Config(typeof(Config.ShortClr))]
public class DecodeJpegParseStreamOnly
{
[Params(TestImages.Jpeg.Baseline.Jpeg420Exif)]
public string TestImage { get; set; }
private string TestImageFullPath => Path.Combine(TestEnvironment.InputImagesDirectoryFullPath, this.TestImage);
private byte[] jpegBytes;
[GlobalSetup]
public void Setup()
{
this.jpegBytes = File.ReadAllBytes(this.TestImageFullPath);
}
[Benchmark(Baseline = true, Description = "System.Drawing FULL")]
public Size JpegSystemDrawing()
{
using (var memoryStream = new MemoryStream(this.jpegBytes))
{
using (var image = System.Drawing.Image.FromStream(memoryStream))
{
return image.Size;
}
}
}
[Benchmark(Description = "PdfJsJpegDecoderCore.ParseStream")]
public void ParseStreamPdfJs()
{
using (var memoryStream = new MemoryStream(this.jpegBytes))
{
var decoder = new PdfJsJpegDecoderCore(Configuration.Default, new JpegDecoder() { IgnoreMetadata = true });
decoder.ParseStream(memoryStream);
decoder.Dispose();
}
}
}
}

1
tests/ImageSharp.Tests/Formats/Jpg/JpegDecoderTests.Images.cs

@ -38,6 +38,7 @@ namespace SixLabors.ImageSharp.Tests.Formats.Jpg
TestImages.Jpeg.Issues.NoEoiProgressive517,
TestImages.Jpeg.Issues.BadRstProgressive518,
TestImages.Jpeg.Issues.MissingFF00ProgressiveBedroom159,
TestImages.Jpeg.Issues.DhtHasWrongLength624,
};
/// <summary>

1
tests/ImageSharp.Tests/TestImages.cs

@ -144,6 +144,7 @@ namespace SixLabors.ImageSharp.Tests
public const string NoEoiProgressive517 = "Jpg/issues/Issue517-No-EOI-Progressive.jpg";
public const string BadRstProgressive518 = "Jpg/issues/Issue518-Bad-RST-Progressive.jpg";
public const string InvalidCast520 = "Jpg/issues/Issue520-InvalidCast.jpg";
public const string DhtHasWrongLength624 = "Jpg/issues/Issue624-DhtHasWrongLength-Progressive-N.jpg";
}
public static readonly string[] All = Baseline.All.Concat(Progressive.All).ToArray();

2
tests/Images/External

@ -1 +1 @@
Subproject commit d9d93bbdd18dd7b818c0d19cc8f967be98045d3c
Subproject commit 98fb7e2e4d5935b1c733bd2b206b6145b71ef378

BIN
tests/Images/Input/Jpg/issues/Issue624-DhtHasWrongLength-Progressive-N.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Loading…
Cancel
Save