mirror of https://github.com/SixLabors/ImageSharp
committed by
GitHub
14 changed files with 801 additions and 504 deletions
@ -1,279 +0,0 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Numerics; |
|||
using System.Runtime.CompilerServices; |
|||
using SixLabors.ImageSharp.Memory; |
|||
using SixLabors.ImageSharp.PixelFormats; |
|||
|
|||
namespace SixLabors.ImageSharp |
|||
{ |
|||
/// <summary>
|
|||
/// Extension methods for <see cref="DenseMatrix{T}"/>.
|
|||
/// TODO: One day rewrite all this to use SIMD intrinsics. There's a lot of scope for improvement.
|
|||
/// </summary>
|
|||
internal static class DenseMatrixUtils |
|||
{ |
|||
/// <summary>
|
|||
/// Computes the sum of vectors in the span referenced by <paramref name="targetRowRef"/> weighted by the two kernel weight values.
|
|||
/// Using this method the convolution filter is not applied to alpha in addition to the color channels.
|
|||
/// </summary>
|
|||
/// <typeparam name="TPixel">The pixel format.</typeparam>
|
|||
/// <param name="matrixY">The vertical dense matrix.</param>
|
|||
/// <param name="matrixX">The horizontal dense matrix.</param>
|
|||
/// <param name="sourcePixels">The source frame.</param>
|
|||
/// <param name="targetRowRef">The target row base reference.</param>
|
|||
/// <param name="row">The current row.</param>
|
|||
/// <param name="column">The current column.</param>
|
|||
/// <param name="minRow">The minimum working area row.</param>
|
|||
/// <param name="maxRow">The maximum working area row.</param>
|
|||
/// <param name="minColumn">The minimum working area column.</param>
|
|||
/// <param name="maxColumn">The maximum working area column.</param>
|
|||
[MethodImpl(InliningOptions.ShortMethod)] |
|||
public static void Convolve2D3<TPixel>( |
|||
in DenseMatrix<float> matrixY, |
|||
in DenseMatrix<float> matrixX, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
ref Vector4 targetRowRef, |
|||
int row, |
|||
int column, |
|||
int minRow, |
|||
int maxRow, |
|||
int minColumn, |
|||
int maxColumn) |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
Convolve2DImpl( |
|||
in matrixY, |
|||
in matrixX, |
|||
sourcePixels, |
|||
row, |
|||
column, |
|||
minRow, |
|||
maxRow, |
|||
minColumn, |
|||
maxColumn, |
|||
out Vector4 vector); |
|||
|
|||
ref Vector4 target = ref Unsafe.Add(ref targetRowRef, column); |
|||
vector.W = target.W; |
|||
|
|||
Numerics.UnPremultiply(ref vector); |
|||
target = vector; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Computes the sum of vectors in the span referenced by <paramref name="targetRowRef"/> weighted by the two kernel weight values.
|
|||
/// Using this method the convolution filter is applied to alpha in addition to the color channels.
|
|||
/// </summary>
|
|||
/// <typeparam name="TPixel">The pixel format.</typeparam>
|
|||
/// <param name="matrixY">The vertical dense matrix.</param>
|
|||
/// <param name="matrixX">The horizontal dense matrix.</param>
|
|||
/// <param name="sourcePixels">The source frame.</param>
|
|||
/// <param name="targetRowRef">The target row base reference.</param>
|
|||
/// <param name="row">The current row.</param>
|
|||
/// <param name="column">The current column.</param>
|
|||
/// <param name="minRow">The minimum working area row.</param>
|
|||
/// <param name="maxRow">The maximum working area row.</param>
|
|||
/// <param name="minColumn">The minimum working area column.</param>
|
|||
/// <param name="maxColumn">The maximum working area column.</param>
|
|||
[MethodImpl(InliningOptions.ShortMethod)] |
|||
public static void Convolve2D4<TPixel>( |
|||
in DenseMatrix<float> matrixY, |
|||
in DenseMatrix<float> matrixX, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
ref Vector4 targetRowRef, |
|||
int row, |
|||
int column, |
|||
int minRow, |
|||
int maxRow, |
|||
int minColumn, |
|||
int maxColumn) |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
Convolve2DImpl( |
|||
in matrixY, |
|||
in matrixX, |
|||
sourcePixels, |
|||
row, |
|||
column, |
|||
minRow, |
|||
maxRow, |
|||
minColumn, |
|||
maxColumn, |
|||
out Vector4 vector); |
|||
|
|||
ref Vector4 target = ref Unsafe.Add(ref targetRowRef, column); |
|||
Numerics.UnPremultiply(ref vector); |
|||
target = vector; |
|||
} |
|||
|
|||
[MethodImpl(InliningOptions.ShortMethod)] |
|||
public static void Convolve2DImpl<TPixel>( |
|||
in DenseMatrix<float> matrixY, |
|||
in DenseMatrix<float> matrixX, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
int row, |
|||
int column, |
|||
int minRow, |
|||
int maxRow, |
|||
int minColumn, |
|||
int maxColumn, |
|||
out Vector4 vector) |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
Vector4 vectorY = default; |
|||
Vector4 vectorX = default; |
|||
int matrixHeight = matrixY.Rows; |
|||
int matrixWidth = matrixY.Columns; |
|||
int radiusY = matrixHeight >> 1; |
|||
int radiusX = matrixWidth >> 1; |
|||
int sourceOffsetColumnBase = column + minColumn; |
|||
|
|||
for (int y = 0; y < matrixHeight; y++) |
|||
{ |
|||
int offsetY = Numerics.Clamp(row + y - radiusY, minRow, maxRow); |
|||
Span<TPixel> sourceRowSpan = sourcePixels.GetRowSpan(offsetY); |
|||
|
|||
for (int x = 0; x < matrixWidth; x++) |
|||
{ |
|||
int offsetX = Numerics.Clamp(sourceOffsetColumnBase + x - radiusX, minColumn, maxColumn); |
|||
var currentColor = sourceRowSpan[offsetX].ToVector4(); |
|||
Numerics.Premultiply(ref currentColor); |
|||
|
|||
vectorX += matrixX[y, x] * currentColor; |
|||
vectorY += matrixY[y, x] * currentColor; |
|||
} |
|||
} |
|||
|
|||
vector = Vector4.SquareRoot((vectorX * vectorX) + (vectorY * vectorY)); |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Computes the sum of vectors in the span referenced by <paramref name="targetRowRef"/> weighted by the kernel weight values.
|
|||
/// Using this method the convolution filter is not applied to alpha in addition to the color channels.
|
|||
/// </summary>
|
|||
/// <typeparam name="TPixel">The pixel format.</typeparam>
|
|||
/// <param name="matrix">The dense matrix.</param>
|
|||
/// <param name="sourcePixels">The source frame.</param>
|
|||
/// <param name="targetRowRef">The target row base reference.</param>
|
|||
/// <param name="row">The current row.</param>
|
|||
/// <param name="column">The current column.</param>
|
|||
/// <param name="minRow">The minimum working area row.</param>
|
|||
/// <param name="maxRow">The maximum working area row.</param>
|
|||
/// <param name="minColumn">The minimum working area column.</param>
|
|||
/// <param name="maxColumn">The maximum working area column.</param>
|
|||
[MethodImpl(InliningOptions.ShortMethod)] |
|||
public static void Convolve3<TPixel>( |
|||
in DenseMatrix<float> matrix, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
ref Vector4 targetRowRef, |
|||
int row, |
|||
int column, |
|||
int minRow, |
|||
int maxRow, |
|||
int minColumn, |
|||
int maxColumn) |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
Vector4 vector = default; |
|||
|
|||
ConvolveImpl( |
|||
in matrix, |
|||
sourcePixels, |
|||
row, |
|||
column, |
|||
minRow, |
|||
maxRow, |
|||
minColumn, |
|||
maxColumn, |
|||
ref vector); |
|||
|
|||
ref Vector4 target = ref Unsafe.Add(ref targetRowRef, column); |
|||
vector.W = target.W; |
|||
|
|||
Numerics.UnPremultiply(ref vector); |
|||
target = vector; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Computes the sum of vectors in the span referenced by <paramref name="targetRowRef"/> weighted by the kernel weight values.
|
|||
/// Using this method the convolution filter is applied to alpha in addition to the color channels.
|
|||
/// </summary>
|
|||
/// <typeparam name="TPixel">The pixel format.</typeparam>
|
|||
/// <param name="matrix">The dense matrix.</param>
|
|||
/// <param name="sourcePixels">The source frame.</param>
|
|||
/// <param name="targetRowRef">The target row base reference.</param>
|
|||
/// <param name="row">The current row.</param>
|
|||
/// <param name="column">The current column.</param>
|
|||
/// <param name="minRow">The minimum working area row.</param>
|
|||
/// <param name="maxRow">The maximum working area row.</param>
|
|||
/// <param name="minColumn">The minimum working area column.</param>
|
|||
/// <param name="maxColumn">The maximum working area column.</param>
|
|||
[MethodImpl(InliningOptions.ShortMethod)] |
|||
public static void Convolve4<TPixel>( |
|||
in DenseMatrix<float> matrix, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
ref Vector4 targetRowRef, |
|||
int row, |
|||
int column, |
|||
int minRow, |
|||
int maxRow, |
|||
int minColumn, |
|||
int maxColumn) |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
Vector4 vector = default; |
|||
|
|||
ConvolveImpl( |
|||
in matrix, |
|||
sourcePixels, |
|||
row, |
|||
column, |
|||
minRow, |
|||
maxRow, |
|||
minColumn, |
|||
maxColumn, |
|||
ref vector); |
|||
|
|||
ref Vector4 target = ref Unsafe.Add(ref targetRowRef, column); |
|||
Numerics.UnPremultiply(ref vector); |
|||
target = vector; |
|||
} |
|||
|
|||
[MethodImpl(InliningOptions.ShortMethod)] |
|||
private static void ConvolveImpl<TPixel>( |
|||
in DenseMatrix<float> matrix, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
int row, |
|||
int column, |
|||
int minRow, |
|||
int maxRow, |
|||
int minColumn, |
|||
int maxColumn, |
|||
ref Vector4 vector) |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
int matrixHeight = matrix.Rows; |
|||
int matrixWidth = matrix.Columns; |
|||
int radiusY = matrixHeight >> 1; |
|||
int radiusX = matrixWidth >> 1; |
|||
int sourceOffsetColumnBase = column + minColumn; |
|||
|
|||
for (int y = 0; y < matrixHeight; y++) |
|||
{ |
|||
int offsetY = Numerics.Clamp(row + y - radiusY, minRow, maxRow); |
|||
Span<TPixel> sourceRowSpan = sourcePixels.GetRowSpan(offsetY); |
|||
|
|||
for (int x = 0; x < matrixWidth; x++) |
|||
{ |
|||
int offsetX = Numerics.Clamp(sourceOffsetColumnBase + x - radiusX, minColumn, maxColumn); |
|||
var currentColor = sourceRowSpan[offsetX].ToVector4(); |
|||
Numerics.Premultiply(ref currentColor); |
|||
vector += matrix[y, x] * currentColor; |
|||
} |
|||
} |
|||
} |
|||
} |
|||
} |
|||
@ -0,0 +1,193 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Numerics; |
|||
using System.Runtime.CompilerServices; |
|||
using System.Runtime.InteropServices; |
|||
using SixLabors.ImageSharp.Advanced; |
|||
using SixLabors.ImageSharp.Memory; |
|||
using SixLabors.ImageSharp.PixelFormats; |
|||
|
|||
namespace SixLabors.ImageSharp.Processing.Processors.Convolution |
|||
{ |
|||
/// <summary>
|
|||
/// A <see langword="struct"/> implementing the logic for 2D convolution.
|
|||
/// </summary>
|
|||
internal readonly struct Convolution2DRowOperation<TPixel> : IRowOperation<Vector4> |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
private readonly Rectangle bounds; |
|||
private readonly Buffer2D<TPixel> targetPixels; |
|||
private readonly Buffer2D<TPixel> sourcePixels; |
|||
private readonly KernelSamplingMap map; |
|||
private readonly DenseMatrix<float> kernelMatrixY; |
|||
private readonly DenseMatrix<float> kernelMatrixX; |
|||
private readonly Configuration configuration; |
|||
private readonly bool preserveAlpha; |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public Convolution2DRowOperation( |
|||
Rectangle bounds, |
|||
Buffer2D<TPixel> targetPixels, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
KernelSamplingMap map, |
|||
DenseMatrix<float> kernelMatrixY, |
|||
DenseMatrix<float> kernelMatrixX, |
|||
Configuration configuration, |
|||
bool preserveAlpha) |
|||
{ |
|||
this.bounds = bounds; |
|||
this.targetPixels = targetPixels; |
|||
this.sourcePixels = sourcePixels; |
|||
this.map = map; |
|||
this.kernelMatrixY = kernelMatrixY; |
|||
this.kernelMatrixX = kernelMatrixX; |
|||
this.configuration = configuration; |
|||
this.preserveAlpha = preserveAlpha; |
|||
} |
|||
|
|||
/// <inheritdoc/>
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public void Invoke(int y, Span<Vector4> span) |
|||
{ |
|||
if (this.preserveAlpha) |
|||
{ |
|||
this.Convolve3(y, span); |
|||
} |
|||
else |
|||
{ |
|||
this.Convolve4(y, span); |
|||
} |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
private void Convolve3(int y, Span<Vector4> span) |
|||
{ |
|||
// Span is 3x bounds.
|
|||
int boundsX = this.bounds.X; |
|||
int boundsWidth = this.bounds.Width; |
|||
Span<Vector4> sourceBuffer = span.Slice(0, boundsWidth); |
|||
Span<Vector4> targetYBuffer = span.Slice(boundsWidth, boundsWidth); |
|||
Span<Vector4> targetXBuffer = span.Slice(boundsWidth * 2, boundsWidth); |
|||
|
|||
var state = new Convolution2DState(in this.kernelMatrixY, in this.kernelMatrixX, this.map); |
|||
ref int sampleRowBase = ref state.GetSampleRow(y - this.bounds.Y); |
|||
|
|||
// Clear the target buffers for each row run.
|
|||
targetYBuffer.Clear(); |
|||
targetXBuffer.Clear(); |
|||
ref Vector4 targetBaseY = ref MemoryMarshal.GetReference(targetYBuffer); |
|||
ref Vector4 targetBaseX = ref MemoryMarshal.GetReference(targetXBuffer); |
|||
|
|||
ReadOnlyKernel kernelY = state.KernelY; |
|||
ReadOnlyKernel kernelX = state.KernelX; |
|||
Span<TPixel> sourceRow; |
|||
for (int kY = 0; kY < kernelY.Rows; kY++) |
|||
{ |
|||
// Get the precalculated source sample row for this kernel row and copy to our buffer.
|
|||
int sampleY = Unsafe.Add(ref sampleRowBase, kY); |
|||
sourceRow = this.sourcePixels.GetRowSpan(sampleY).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.ToVector4(this.configuration, sourceRow, sourceBuffer); |
|||
|
|||
ref Vector4 sourceBase = ref MemoryMarshal.GetReference(sourceBuffer); |
|||
|
|||
for (int x = 0; x < sourceBuffer.Length; x++) |
|||
{ |
|||
ref int sampleColumnBase = ref state.GetSampleColumn(x); |
|||
ref Vector4 targetY = ref Unsafe.Add(ref targetBaseY, x); |
|||
ref Vector4 targetX = ref Unsafe.Add(ref targetBaseX, x); |
|||
|
|||
for (int kX = 0; kX < kernelY.Columns; kX++) |
|||
{ |
|||
int sampleX = Unsafe.Add(ref sampleColumnBase, kX) - boundsX; |
|||
Vector4 sample = Unsafe.Add(ref sourceBase, sampleX); |
|||
targetY += kernelX[kY, kX] * sample; |
|||
targetX += kernelY[kY, kX] * sample; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Now we need to combine the values and copy the original alpha values
|
|||
// from the source row.
|
|||
sourceRow = this.sourcePixels.GetRowSpan(y).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.ToVector4(this.configuration, sourceRow, sourceBuffer); |
|||
|
|||
for (int x = 0; x < sourceRow.Length; x++) |
|||
{ |
|||
ref Vector4 target = ref Unsafe.Add(ref targetBaseY, x); |
|||
Vector4 vectorY = target; |
|||
Vector4 vectorX = Unsafe.Add(ref targetBaseX, x); |
|||
|
|||
target = Vector4.SquareRoot((vectorX * vectorX) + (vectorY * vectorY)); |
|||
target.W = Unsafe.Add(ref MemoryMarshal.GetReference(sourceBuffer), x).W; |
|||
} |
|||
|
|||
Span<TPixel> targetRowSpan = this.targetPixels.GetRowSpan(y).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.FromVector4Destructive(this.configuration, targetYBuffer, targetRowSpan); |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
private void Convolve4(int y, Span<Vector4> span) |
|||
{ |
|||
// Span is 3x bounds.
|
|||
int boundsX = this.bounds.X; |
|||
int boundsWidth = this.bounds.Width; |
|||
Span<Vector4> sourceBuffer = span.Slice(0, boundsWidth); |
|||
Span<Vector4> targetYBuffer = span.Slice(boundsWidth, boundsWidth); |
|||
Span<Vector4> targetXBuffer = span.Slice(boundsWidth * 2, boundsWidth); |
|||
|
|||
var state = new Convolution2DState(in this.kernelMatrixY, in this.kernelMatrixX, this.map); |
|||
ref int sampleRowBase = ref state.GetSampleRow(y - this.bounds.Y); |
|||
|
|||
// Clear the target buffers for each row run.
|
|||
targetYBuffer.Clear(); |
|||
targetXBuffer.Clear(); |
|||
ref Vector4 targetBaseY = ref MemoryMarshal.GetReference(targetYBuffer); |
|||
ref Vector4 targetBaseX = ref MemoryMarshal.GetReference(targetXBuffer); |
|||
|
|||
ReadOnlyKernel kernelY = state.KernelY; |
|||
ReadOnlyKernel kernelX = state.KernelX; |
|||
for (int kY = 0; kY < kernelY.Rows; kY++) |
|||
{ |
|||
// Get the precalculated source sample row for this kernel row and copy to our buffer.
|
|||
int sampleY = Unsafe.Add(ref sampleRowBase, kY); |
|||
Span<TPixel> sourceRow = this.sourcePixels.GetRowSpan(sampleY).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.ToVector4(this.configuration, sourceRow, sourceBuffer); |
|||
|
|||
Numerics.Premultiply(sourceBuffer); |
|||
ref Vector4 sourceBase = ref MemoryMarshal.GetReference(sourceBuffer); |
|||
|
|||
for (int x = 0; x < sourceBuffer.Length; x++) |
|||
{ |
|||
ref int sampleColumnBase = ref state.GetSampleColumn(x); |
|||
ref Vector4 targetY = ref Unsafe.Add(ref targetBaseY, x); |
|||
ref Vector4 targetX = ref Unsafe.Add(ref targetBaseX, x); |
|||
|
|||
for (int kX = 0; kX < kernelY.Columns; kX++) |
|||
{ |
|||
int sampleX = Unsafe.Add(ref sampleColumnBase, kX) - boundsX; |
|||
Vector4 sample = Unsafe.Add(ref sourceBase, sampleX); |
|||
targetY += kernelX[kY, kX] * sample; |
|||
targetX += kernelY[kY, kX] * sample; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Now we need to combine the values
|
|||
for (int x = 0; x < targetYBuffer.Length; x++) |
|||
{ |
|||
ref Vector4 target = ref Unsafe.Add(ref targetBaseY, x); |
|||
Vector4 vectorY = target; |
|||
Vector4 vectorX = Unsafe.Add(ref targetBaseX, x); |
|||
|
|||
target = Vector4.SquareRoot((vectorX * vectorX) + (vectorY * vectorY)); |
|||
} |
|||
|
|||
Numerics.UnPremultiply(targetYBuffer); |
|||
|
|||
Span<TPixel> targetRow = this.targetPixels.GetRowSpan(y).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.FromVector4Destructive(this.configuration, targetYBuffer, targetRow); |
|||
} |
|||
} |
|||
} |
|||
@ -0,0 +1,54 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Runtime.CompilerServices; |
|||
using System.Runtime.InteropServices; |
|||
|
|||
namespace SixLabors.ImageSharp.Processing.Processors.Convolution |
|||
{ |
|||
/// <summary>
|
|||
/// A stack only struct used for reducing reference indirection during 2D convolution operations.
|
|||
/// </summary>
|
|||
internal readonly ref struct Convolution2DState |
|||
{ |
|||
private readonly Span<int> rowOffsetMap; |
|||
private readonly Span<int> columnOffsetMap; |
|||
private readonly int kernelHeight; |
|||
private readonly int kernelWidth; |
|||
|
|||
public Convolution2DState( |
|||
in DenseMatrix<float> kernelY, |
|||
in DenseMatrix<float> kernelX, |
|||
KernelSamplingMap map) |
|||
{ |
|||
// We check the kernels are the same size upstream.
|
|||
this.KernelY = new ReadOnlyKernel(kernelY); |
|||
this.KernelX = new ReadOnlyKernel(kernelX); |
|||
this.kernelHeight = kernelY.Rows; |
|||
this.kernelWidth = kernelY.Columns; |
|||
this.rowOffsetMap = map.GetRowOffsetSpan(); |
|||
this.columnOffsetMap = map.GetColumnOffsetSpan(); |
|||
} |
|||
|
|||
public readonly ReadOnlyKernel KernelY |
|||
{ |
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
get; |
|||
} |
|||
|
|||
public readonly ReadOnlyKernel KernelX |
|||
{ |
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
get; |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public readonly ref int GetSampleRow(int row) |
|||
=> ref Unsafe.Add(ref MemoryMarshal.GetReference(this.rowOffsetMap), row * this.kernelHeight); |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public readonly ref int GetSampleColumn(int column) |
|||
=> ref Unsafe.Add(ref MemoryMarshal.GetReference(this.columnOffsetMap), column * this.kernelWidth); |
|||
} |
|||
} |
|||
@ -0,0 +1,163 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Numerics; |
|||
using System.Runtime.CompilerServices; |
|||
using System.Runtime.InteropServices; |
|||
using SixLabors.ImageSharp.Advanced; |
|||
using SixLabors.ImageSharp.Memory; |
|||
using SixLabors.ImageSharp.PixelFormats; |
|||
|
|||
namespace SixLabors.ImageSharp.Processing.Processors.Convolution |
|||
{ |
|||
/// <summary>
|
|||
/// A <see langword="struct"/> implementing the logic for 1D convolution.
|
|||
/// </summary>
|
|||
internal readonly struct ConvolutionRowOperation<TPixel> : IRowOperation<Vector4> |
|||
where TPixel : unmanaged, IPixel<TPixel> |
|||
{ |
|||
private readonly Rectangle bounds; |
|||
private readonly Buffer2D<TPixel> targetPixels; |
|||
private readonly Buffer2D<TPixel> sourcePixels; |
|||
private readonly KernelSamplingMap map; |
|||
private readonly DenseMatrix<float> kernelMatrix; |
|||
private readonly Configuration configuration; |
|||
private readonly bool preserveAlpha; |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public ConvolutionRowOperation( |
|||
Rectangle bounds, |
|||
Buffer2D<TPixel> targetPixels, |
|||
Buffer2D<TPixel> sourcePixels, |
|||
KernelSamplingMap map, |
|||
DenseMatrix<float> kernelMatrix, |
|||
Configuration configuration, |
|||
bool preserveAlpha) |
|||
{ |
|||
this.bounds = bounds; |
|||
this.targetPixels = targetPixels; |
|||
this.sourcePixels = sourcePixels; |
|||
this.map = map; |
|||
this.kernelMatrix = kernelMatrix; |
|||
this.configuration = configuration; |
|||
this.preserveAlpha = preserveAlpha; |
|||
} |
|||
|
|||
/// <inheritdoc/>
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public void Invoke(int y, Span<Vector4> span) |
|||
{ |
|||
if (this.preserveAlpha) |
|||
{ |
|||
this.Convolve3(y, span); |
|||
} |
|||
else |
|||
{ |
|||
this.Convolve4(y, span); |
|||
} |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
private void Convolve3(int y, Span<Vector4> span) |
|||
{ |
|||
// Span is 2x bounds.
|
|||
int boundsX = this.bounds.X; |
|||
int boundsWidth = this.bounds.Width; |
|||
Span<Vector4> sourceBuffer = span.Slice(0, this.bounds.Width); |
|||
Span<Vector4> targetBuffer = span.Slice(this.bounds.Width); |
|||
|
|||
var state = new ConvolutionState(in this.kernelMatrix, this.map); |
|||
ref int sampleRowBase = ref state.GetSampleRow(y - this.bounds.Y); |
|||
|
|||
// Clear the target buffer for each row run.
|
|||
targetBuffer.Clear(); |
|||
ref Vector4 targetBase = ref MemoryMarshal.GetReference(targetBuffer); |
|||
|
|||
ReadOnlyKernel kernel = state.Kernel; |
|||
Span<TPixel> sourceRow; |
|||
for (int kY = 0; kY < kernel.Rows; kY++) |
|||
{ |
|||
// Get the precalculated source sample row for this kernel row and copy to our buffer.
|
|||
int sampleY = Unsafe.Add(ref sampleRowBase, kY); |
|||
sourceRow = this.sourcePixels.GetRowSpan(sampleY).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.ToVector4(this.configuration, sourceRow, sourceBuffer); |
|||
|
|||
ref Vector4 sourceBase = ref MemoryMarshal.GetReference(sourceBuffer); |
|||
|
|||
for (int x = 0; x < sourceBuffer.Length; x++) |
|||
{ |
|||
ref int sampleColumnBase = ref state.GetSampleColumn(x); |
|||
ref Vector4 target = ref Unsafe.Add(ref targetBase, x); |
|||
|
|||
for (int kX = 0; kX < kernel.Columns; kX++) |
|||
{ |
|||
int sampleX = Unsafe.Add(ref sampleColumnBase, kX) - boundsX; |
|||
Vector4 sample = Unsafe.Add(ref sourceBase, sampleX); |
|||
target += kernel[kY, kX] * sample; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Now we need to copy the original alpha values from the source row.
|
|||
sourceRow = this.sourcePixels.GetRowSpan(y).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.ToVector4(this.configuration, sourceRow, sourceBuffer); |
|||
|
|||
for (int x = 0; x < sourceRow.Length; x++) |
|||
{ |
|||
ref Vector4 target = ref Unsafe.Add(ref targetBase, x); |
|||
target.W = Unsafe.Add(ref MemoryMarshal.GetReference(sourceBuffer), x).W; |
|||
} |
|||
|
|||
Span<TPixel> targetRow = this.targetPixels.GetRowSpan(y).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.FromVector4Destructive(this.configuration, targetBuffer, targetRow); |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
private void Convolve4(int y, Span<Vector4> span) |
|||
{ |
|||
// Span is 2x bounds.
|
|||
int boundsX = this.bounds.X; |
|||
int boundsWidth = this.bounds.Width; |
|||
Span<Vector4> sourceBuffer = span.Slice(0, this.bounds.Width); |
|||
Span<Vector4> targetBuffer = span.Slice(this.bounds.Width); |
|||
|
|||
var state = new ConvolutionState(in this.kernelMatrix, this.map); |
|||
ref int sampleRowBase = ref state.GetSampleRow(y - this.bounds.Y); |
|||
|
|||
// Clear the target buffer for each row run.
|
|||
targetBuffer.Clear(); |
|||
ref Vector4 targetBase = ref MemoryMarshal.GetReference(targetBuffer); |
|||
|
|||
ReadOnlyKernel kernel = state.Kernel; |
|||
for (int kY = 0; kY < kernel.Rows; kY++) |
|||
{ |
|||
// Get the precalculated source sample row for this kernel row and copy to our buffer.
|
|||
int sampleY = Unsafe.Add(ref sampleRowBase, kY); |
|||
Span<TPixel> sourceRow = this.sourcePixels.GetRowSpan(sampleY).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.ToVector4(this.configuration, sourceRow, sourceBuffer); |
|||
|
|||
Numerics.Premultiply(sourceBuffer); |
|||
ref Vector4 sourceBase = ref MemoryMarshal.GetReference(sourceBuffer); |
|||
|
|||
for (int x = 0; x < sourceBuffer.Length; x++) |
|||
{ |
|||
ref int sampleColumnBase = ref state.GetSampleColumn(x); |
|||
ref Vector4 target = ref Unsafe.Add(ref targetBase, x); |
|||
|
|||
for (int kX = 0; kX < kernel.Columns; kX++) |
|||
{ |
|||
int sampleX = Unsafe.Add(ref sampleColumnBase, kX) - boundsX; |
|||
Vector4 sample = Unsafe.Add(ref sourceBase, sampleX); |
|||
target += kernel[kY, kX] * sample; |
|||
} |
|||
} |
|||
} |
|||
|
|||
Numerics.UnPremultiply(targetBuffer); |
|||
|
|||
Span<TPixel> targetRow = this.targetPixels.GetRowSpan(y).Slice(boundsX, boundsWidth); |
|||
PixelOperations<TPixel>.Instance.FromVector4Destructive(this.configuration, targetBuffer, targetRow); |
|||
} |
|||
} |
|||
} |
|||
@ -0,0 +1,45 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Runtime.CompilerServices; |
|||
using System.Runtime.InteropServices; |
|||
|
|||
namespace SixLabors.ImageSharp.Processing.Processors.Convolution |
|||
{ |
|||
/// <summary>
|
|||
/// A stack only struct used for reducing reference indirection during convolution operations.
|
|||
/// </summary>
|
|||
internal readonly ref struct ConvolutionState |
|||
{ |
|||
private readonly Span<int> rowOffsetMap; |
|||
private readonly Span<int> columnOffsetMap; |
|||
private readonly int kernelHeight; |
|||
private readonly int kernelWidth; |
|||
|
|||
public ConvolutionState( |
|||
in DenseMatrix<float> kernel, |
|||
KernelSamplingMap map) |
|||
{ |
|||
this.Kernel = new ReadOnlyKernel(kernel); |
|||
this.kernelHeight = kernel.Rows; |
|||
this.kernelWidth = kernel.Columns; |
|||
this.rowOffsetMap = map.GetRowOffsetSpan(); |
|||
this.columnOffsetMap = map.GetColumnOffsetSpan(); |
|||
} |
|||
|
|||
public readonly ReadOnlyKernel Kernel |
|||
{ |
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
get; |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public readonly ref int GetSampleRow(int row) |
|||
=> ref Unsafe.Add(ref MemoryMarshal.GetReference(this.rowOffsetMap), row * this.kernelHeight); |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public readonly ref int GetSampleColumn(int column) |
|||
=> ref Unsafe.Add(ref MemoryMarshal.GetReference(this.columnOffsetMap), column * this.kernelWidth); |
|||
} |
|||
} |
|||
@ -0,0 +1,102 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Buffers; |
|||
using System.Runtime.CompilerServices; |
|||
using System.Runtime.InteropServices; |
|||
using SixLabors.ImageSharp.Memory; |
|||
|
|||
namespace SixLabors.ImageSharp.Processing.Processors.Convolution |
|||
{ |
|||
/// <summary>
|
|||
/// Provides a map of the convolution kernel sampling offsets.
|
|||
/// </summary>
|
|||
internal sealed class KernelSamplingMap : IDisposable |
|||
{ |
|||
private readonly MemoryAllocator allocator; |
|||
private bool isDisposed; |
|||
private IMemoryOwner<int> yOffsets; |
|||
private IMemoryOwner<int> xOffsets; |
|||
|
|||
/// <summary>
|
|||
/// Initializes a new instance of the <see cref="KernelSamplingMap"/> class.
|
|||
/// </summary>
|
|||
/// <param name="allocator">The memory allocator.</param>
|
|||
public KernelSamplingMap(MemoryAllocator allocator) => this.allocator = allocator; |
|||
|
|||
/// <summary>
|
|||
/// Builds a map of the sampling offsets for the kernel clamped by the given bounds.
|
|||
/// </summary>
|
|||
/// <param name="kernel">The convolution kernel.</param>
|
|||
/// <param name="bounds">The source bounds.</param>
|
|||
public void BuildSamplingOffsetMap(DenseMatrix<float> kernel, Rectangle bounds) |
|||
{ |
|||
int kernelHeight = kernel.Rows; |
|||
int kernelWidth = kernel.Columns; |
|||
this.yOffsets = this.allocator.Allocate<int>(bounds.Height * kernelHeight); |
|||
this.xOffsets = this.allocator.Allocate<int>(bounds.Width * kernelWidth); |
|||
|
|||
int minY = bounds.Y; |
|||
int maxY = bounds.Bottom - 1; |
|||
int minX = bounds.X; |
|||
int maxX = bounds.Right - 1; |
|||
|
|||
int radiusY = kernelHeight >> 1; |
|||
int radiusX = kernelWidth >> 1; |
|||
|
|||
// Calculate the y and x sampling offsets clamped to the given rectangle.
|
|||
// While this isn't a hotpath we still dip into unsafe to avoid the span bounds
|
|||
// checks as the can potentially be looping over large arrays.
|
|||
Span<int> ySpan = this.yOffsets.GetSpan(); |
|||
ref int ySpanBase = ref MemoryMarshal.GetReference(ySpan); |
|||
for (int row = 0; row < bounds.Height; row++) |
|||
{ |
|||
int rowBase = row * kernelHeight; |
|||
for (int y = 0; y < kernelHeight; y++) |
|||
{ |
|||
Unsafe.Add(ref ySpanBase, rowBase + y) = row + y + minY - radiusY; |
|||
} |
|||
} |
|||
|
|||
if (kernelHeight > 1) |
|||
{ |
|||
Numerics.Clamp(ySpan, minY, maxY); |
|||
} |
|||
|
|||
Span<int> xSpan = this.xOffsets.GetSpan(); |
|||
ref int xSpanBase = ref MemoryMarshal.GetReference(xSpan); |
|||
for (int column = 0; column < bounds.Width; column++) |
|||
{ |
|||
int columnBase = column * kernelWidth; |
|||
for (int x = 0; x < kernelWidth; x++) |
|||
{ |
|||
Unsafe.Add(ref xSpanBase, columnBase + x) = column + x + minX - radiusX; |
|||
} |
|||
} |
|||
|
|||
if (kernelWidth > 1) |
|||
{ |
|||
Numerics.Clamp(xSpan, minX, maxX); |
|||
} |
|||
} |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public Span<int> GetRowOffsetSpan() => this.yOffsets.GetSpan(); |
|||
|
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
public Span<int> GetColumnOffsetSpan() => this.xOffsets.GetSpan(); |
|||
|
|||
/// <inheritdoc/>
|
|||
public void Dispose() |
|||
{ |
|||
if (!this.isDisposed) |
|||
{ |
|||
this.yOffsets.Dispose(); |
|||
this.xOffsets.Dispose(); |
|||
|
|||
this.isDisposed = true; |
|||
} |
|||
} |
|||
} |
|||
} |
|||
@ -0,0 +1,63 @@ |
|||
// Copyright (c) Six Labors.
|
|||
// Licensed under the Apache License, Version 2.0.
|
|||
|
|||
using System; |
|||
using System.Diagnostics; |
|||
using System.Runtime.CompilerServices; |
|||
using System.Runtime.InteropServices; |
|||
|
|||
namespace SixLabors.ImageSharp.Processing.Processors.Convolution |
|||
{ |
|||
/// <summary>
|
|||
/// A stack only, readonly, kernel matrix that can be indexed without
|
|||
/// bounds checks when compiled in release mode.
|
|||
/// </summary>
|
|||
internal readonly ref struct ReadOnlyKernel |
|||
{ |
|||
private readonly ReadOnlySpan<float> values; |
|||
|
|||
public ReadOnlyKernel(DenseMatrix<float> matrix) |
|||
{ |
|||
this.Columns = matrix.Columns; |
|||
this.Rows = matrix.Rows; |
|||
this.values = matrix.Span; |
|||
} |
|||
|
|||
public int Columns |
|||
{ |
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
get; |
|||
} |
|||
|
|||
public int Rows |
|||
{ |
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
get; |
|||
} |
|||
|
|||
public float this[int row, int column] |
|||
{ |
|||
[MethodImpl(MethodImplOptions.AggressiveInlining)] |
|||
get |
|||
{ |
|||
this.CheckCoordinates(row, column); |
|||
ref float vBase = ref MemoryMarshal.GetReference(this.values); |
|||
return Unsafe.Add(ref vBase, (row * this.Columns) + column); |
|||
} |
|||
} |
|||
|
|||
[Conditional("DEBUG")] |
|||
private void CheckCoordinates(int row, int column) |
|||
{ |
|||
if (row < 0 || row >= this.Rows) |
|||
{ |
|||
throw new ArgumentOutOfRangeException(nameof(row), row, $"{row} is outwith the matrix bounds."); |
|||
} |
|||
|
|||
if (column < 0 || column >= this.Columns) |
|||
{ |
|||
throw new ArgumentOutOfRangeException(nameof(column), column, $"{column} is outwith the matrix bounds."); |
|||
} |
|||
} |
|||
} |
|||
} |
|||
Loading…
Reference in new issue