Browse Source

Faster IDCT

pull/525/head
James Jackson-South 8 years ago
parent
commit
bc34965b91
  1. 359
      src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsIDCT.cs
  2. 19
      src/ImageSharp/Formats/Jpeg/PdfJsPort/PdfJsJpegDecoderCore.cs

359
src/ImageSharp/Formats/Jpeg/PdfJsPort/Components/PdfJsIDCT.cs

@ -3,6 +3,7 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using SixLabors.ImageSharp.Memory;
namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
@ -12,20 +13,6 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
/// </summary>
internal static class PdfJsIDCT
{
/// <summary>
/// Precomputed values scaled up by 14 bits
/// </summary>
public static readonly short[] Aanscales =
{
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855,
12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585,
5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873,
17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299,
11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315,
4520, 3552, 2446, 1247
};
private const int DctCos1 = 4017; // cos(pi/16)
private const int DctSin1 = 799; // sin(pi/16)
private const int DctCos3 = 3406; // cos(3*pi/16)
@ -34,16 +21,6 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
private const int DctSin6 = 3784; // sin(6*pi/16)
private const int DctSqrt2 = 5793; // sqrt(2)
private const int DctSqrt1D2 = 2896; // sqrt(2) / 2
#pragma warning disable SA1310 // Field names must not contain underscore
private const int FIX_1_082392200 = 277; // FIX(1.082392200)
private const int FIX_1_414213562 = 362; // FIX(1.414213562)
private const int FIX_1_847759065 = 473; // FIX(1.847759065)
private const int FIX_2_613125930 = 669; // FIX(2.613125930)
#pragma warning restore SA1310 // Field names must not contain underscore
private const int ConstBits = 8;
private const int Pass1Bits = 2; // Factional bits in scale factors
private const int MaxJSample = 255;
private const int CenterJSample = 128;
private const int RangeCenter = (MaxJSample * 2) + 2;
@ -89,9 +66,9 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
/// <param name="blockBufferOffset">The block buffer offset</param>
/// <param name="computationBuffer">The computational buffer for holding temp values</param>
/// <param name="quantizationTable">The quantization table</param>
public static void QuantizeAndInverse(PdfJsFrameComponent component, int blockBufferOffset, ref Span<short> computationBuffer, ref Span<short> quantizationTable)
public static void QuantizeAndInverse(PdfJsFrameComponent component, int blockBufferOffset, ref short computationBuffer, ref short quantizationTable)
{
Span<short> blockData = component.BlockData.Slice(blockBufferOffset);
ref short blockDataRef = ref MemoryMarshal.GetReference(component.BlockData.Slice(blockBufferOffset));
int v0, v1, v2, v3, v4, v5, v6, v7;
int p0, p1, p2, p3, p4, p5, p6, p7;
int t;
@ -100,42 +77,42 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
for (int row = 0; row < 64; row += 8)
{
// gather block data
p0 = blockData[row];
p1 = blockData[row + 1];
p2 = blockData[row + 2];
p3 = blockData[row + 3];
p4 = blockData[row + 4];
p5 = blockData[row + 5];
p6 = blockData[row + 6];
p7 = blockData[row + 7];
p0 = Unsafe.Add(ref blockDataRef, row);
p1 = Unsafe.Add(ref blockDataRef, row + 1);
p2 = Unsafe.Add(ref blockDataRef, row + 2);
p3 = Unsafe.Add(ref blockDataRef, row + 3);
p4 = Unsafe.Add(ref blockDataRef, row + 4);
p5 = Unsafe.Add(ref blockDataRef, row + 5);
p6 = Unsafe.Add(ref blockDataRef, row + 6);
p7 = Unsafe.Add(ref blockDataRef, row + 7);
// dequant p0
p0 *= quantizationTable[row];
p0 *= Unsafe.Add(ref quantizationTable, row);
// check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) == 0)
{
t = ((DctSqrt2 * p0) + 512) >> 10;
short st = (short)t;
computationBuffer[row] = st;
computationBuffer[row + 1] = st;
computationBuffer[row + 2] = st;
computationBuffer[row + 3] = st;
computationBuffer[row + 4] = st;
computationBuffer[row + 5] = st;
computationBuffer[row + 6] = st;
computationBuffer[row + 7] = st;
Unsafe.Add(ref computationBuffer, row) = st;
Unsafe.Add(ref computationBuffer, row + 1) = st;
Unsafe.Add(ref computationBuffer, row + 2) = st;
Unsafe.Add(ref computationBuffer, row + 3) = st;
Unsafe.Add(ref computationBuffer, row + 4) = st;
Unsafe.Add(ref computationBuffer, row + 5) = st;
Unsafe.Add(ref computationBuffer, row + 6) = st;
Unsafe.Add(ref computationBuffer, row + 7) = st;
continue;
}
// dequant p1 ... p7
p1 *= quantizationTable[row + 1];
p2 *= quantizationTable[row + 2];
p3 *= quantizationTable[row + 3];
p4 *= quantizationTable[row + 4];
p5 *= quantizationTable[row + 5];
p6 *= quantizationTable[row + 6];
p7 *= quantizationTable[row + 7];
p1 *= Unsafe.Add(ref quantizationTable, row + 1);
p2 *= Unsafe.Add(ref quantizationTable, row + 2);
p3 *= Unsafe.Add(ref quantizationTable, row + 3);
p4 *= Unsafe.Add(ref quantizationTable, row + 4);
p5 *= Unsafe.Add(ref quantizationTable, row + 5);
p6 *= Unsafe.Add(ref quantizationTable, row + 6);
p7 *= Unsafe.Add(ref quantizationTable, row + 7);
// stage 4
v0 = ((DctSqrt2 * p0) + 128) >> 8;
@ -171,27 +148,27 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
v6 = t;
// stage 1
computationBuffer[row] = (short)(v0 + v7);
computationBuffer[row + 7] = (short)(v0 - v7);
computationBuffer[row + 1] = (short)(v1 + v6);
computationBuffer[row + 6] = (short)(v1 - v6);
computationBuffer[row + 2] = (short)(v2 + v5);
computationBuffer[row + 5] = (short)(v2 - v5);
computationBuffer[row + 3] = (short)(v3 + v4);
computationBuffer[row + 4] = (short)(v3 - v4);
Unsafe.Add(ref computationBuffer, row) = (short)(v0 + v7);
Unsafe.Add(ref computationBuffer, row + 7) = (short)(v0 - v7);
Unsafe.Add(ref computationBuffer, row + 1) = (short)(v1 + v6);
Unsafe.Add(ref computationBuffer, row + 6) = (short)(v1 - v6);
Unsafe.Add(ref computationBuffer, row + 2) = (short)(v2 + v5);
Unsafe.Add(ref computationBuffer, row + 5) = (short)(v2 - v5);
Unsafe.Add(ref computationBuffer, row + 3) = (short)(v3 + v4);
Unsafe.Add(ref computationBuffer, row + 4) = (short)(v3 - v4);
}
// inverse DCT on columns
for (int col = 0; col < 8; ++col)
{
p0 = computationBuffer[col];
p1 = computationBuffer[col + 8];
p2 = computationBuffer[col + 16];
p3 = computationBuffer[col + 24];
p4 = computationBuffer[col + 32];
p5 = computationBuffer[col + 40];
p6 = computationBuffer[col + 48];
p7 = computationBuffer[col + 56];
p0 = Unsafe.Add(ref computationBuffer, col);
p1 = Unsafe.Add(ref computationBuffer, col + 8);
p2 = Unsafe.Add(ref computationBuffer, col + 16);
p3 = Unsafe.Add(ref computationBuffer, col + 24);
p4 = Unsafe.Add(ref computationBuffer, col + 32);
p5 = Unsafe.Add(ref computationBuffer, col + 40);
p6 = Unsafe.Add(ref computationBuffer, col + 48);
p7 = Unsafe.Add(ref computationBuffer, col + 56);
// check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) == 0)
@ -202,14 +179,14 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
t = (t < -2040) ? 0 : (t >= 2024) ? MaxJSample : (t + 2056) >> 4;
short st = (short)t;
blockData[col] = st;
blockData[col + 8] = st;
blockData[col + 16] = st;
blockData[col + 24] = st;
blockData[col + 32] = st;
blockData[col + 40] = st;
blockData[col + 48] = st;
blockData[col + 56] = st;
Unsafe.Add(ref blockDataRef, col) = st;
Unsafe.Add(ref blockDataRef, col + 8) = st;
Unsafe.Add(ref blockDataRef, col + 16) = st;
Unsafe.Add(ref blockDataRef, col + 24) = st;
Unsafe.Add(ref blockDataRef, col + 32) = st;
Unsafe.Add(ref blockDataRef, col + 40) = st;
Unsafe.Add(ref blockDataRef, col + 48) = st;
Unsafe.Add(ref blockDataRef, col + 56) = st;
continue;
}
@ -269,233 +246,15 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort.Components
p7 = (p7 < 16) ? 0 : (p7 >= 4080) ? MaxJSample : p7 >> 4;
// store block data
blockData[col] = (short)p0;
blockData[col + 8] = (short)p1;
blockData[col + 16] = (short)p2;
blockData[col + 24] = (short)p3;
blockData[col + 32] = (short)p4;
blockData[col + 40] = (short)p5;
blockData[col + 48] = (short)p6;
blockData[col + 56] = (short)p7;
}
}
/// <summary>
/// A port of <see href="https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/jidctfst.c#L171"/>
/// A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
/// on each row(or vice versa, but it's more convenient to emit a row at
/// a time). Direct algorithms are also available, but they are much more
/// complex and seem not to be any faster when reduced to code.
///
/// This implementation is based on Arai, Agui, and Nakajima's algorithm for
/// scaled DCT.Their original paper (Trans.IEICE E-71(11):1095) is in
/// Japanese, but the algorithm is described in the Pennebaker &amp; Mitchell
/// JPEG textbook(see REFERENCES section in file README.ijg). The following
/// code is based directly on figure 4-8 in P&amp;M.
/// While an 8-point DCT cannot be done in less than 11 multiplies, it is
/// possible to arrange the computation so that many of the multiplies are
/// simple scalings of the final outputs.These multiplies can then be
/// folded into the multiplications or divisions by the JPEG quantization
/// table entries. The AA&amp;N method leaves only 5 multiplies and 29 adds
/// to be done in the DCT itself.
/// The primary disadvantage of this method is that with fixed-point math,
/// accuracy is lost due to imprecise representation of the scaled
/// quantization values.The smaller the quantization table entry, the less
/// precise the scaled value, so this implementation does worse with high -
/// quality - setting files than with low - quality ones.
/// </summary>
/// <param name="component">The frame component</param>
/// <param name="blockBufferOffset">The block buffer offset</param>
/// <param name="computationBuffer">The computational buffer for holding temp values</param>
/// <param name="multiplierTable">The multiplier table</param>
public static void QuantizeAndInverseFast(PdfJsFrameComponent component, int blockBufferOffset, ref Span<short> computationBuffer, ref Span<short> multiplierTable)
{
Span<short> blockData = component.BlockData.Slice(blockBufferOffset);
int p0, p1, p2, p3, p4, p5, p6, p7;
for (int col = 0; col < 8; col++)
{
// Gather block data
p0 = blockData[col];
p1 = blockData[col + 8];
p2 = blockData[col + 16];
p3 = blockData[col + 24];
p4 = blockData[col + 32];
p5 = blockData[col + 40];
p6 = blockData[col + 48];
p7 = blockData[col + 56];
int tmp0 = p0 * multiplierTable[col];
// Due to quantization, we will usually find that many of the input
// coefficients are zero, especially the AC terms. We can exploit this
// by short-circuiting the IDCT calculation for any column in which all
// the AC terms are zero. In that case each output is equal to the
// DC coefficient (with scale factor as needed).
// With typical images and quantization tables, half or more of the
// column DCT calculations can be simplified this way.
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) == 0)
{
short dcval = (short)tmp0;
computationBuffer[col] = dcval;
computationBuffer[col + 8] = dcval;
computationBuffer[col + 16] = dcval;
computationBuffer[col + 24] = dcval;
computationBuffer[col + 32] = dcval;
computationBuffer[col + 40] = dcval;
computationBuffer[col + 48] = dcval;
computationBuffer[col + 56] = dcval;
continue;
}
// Even part
int tmp1 = p2 * multiplierTable[col + 16];
int tmp2 = p4 * multiplierTable[col + 32];
int tmp3 = p6 * multiplierTable[col + 48];
int tmp10 = tmp0 + tmp2; // Phase 3
int tmp11 = tmp0 - tmp2;
int tmp13 = tmp1 + tmp3; // Phases 5-3
int tmp12 = Multiply(tmp1 - tmp3, FIX_1_414213562) - tmp13; // 2*c4
tmp0 = tmp10 + tmp13; // Phase 2
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
// Odd Part
int tmp4 = p1 * multiplierTable[col + 8];
int tmp5 = p3 * multiplierTable[col + 24];
int tmp6 = p5 * multiplierTable[col + 40];
int tmp7 = p7 * multiplierTable[col + 56];
int z13 = tmp6 + tmp5; // Phase 6
int z10 = tmp6 - tmp5;
int z11 = tmp4 + tmp7;
int z12 = tmp4 - tmp7;
tmp7 = z11 + z13; // Phase 5
tmp11 = Multiply(z11 - z13, FIX_1_414213562); // 2*c4
int z5 = Multiply(z10 + z12, FIX_1_847759065); // 2*c2
tmp10 = z5 - Multiply(z12, FIX_1_082392200); // 2*(c2-c6)
tmp12 = z5 - Multiply(z10, FIX_2_613125930); // 2*(c2+c6)
tmp6 = tmp12 - tmp7; // Phase 2
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 - tmp5;
computationBuffer[col] = (short)(tmp0 + tmp7);
computationBuffer[col + 56] = (short)(tmp0 - tmp7);
computationBuffer[col + 8] = (short)(tmp1 + tmp6);
computationBuffer[col + 48] = (short)(tmp1 - tmp6);
computationBuffer[col + 16] = (short)(tmp2 + tmp5);
computationBuffer[col + 40] = (short)(tmp2 - tmp5);
computationBuffer[col + 24] = (short)(tmp3 + tmp4);
computationBuffer[col + 32] = (short)(tmp3 - tmp4);
Unsafe.Add(ref blockDataRef, col) = (short)p0;
Unsafe.Add(ref blockDataRef, col + 8) = (short)p1;
Unsafe.Add(ref blockDataRef, col + 16) = (short)p2;
Unsafe.Add(ref blockDataRef, col + 24) = (short)p3;
Unsafe.Add(ref blockDataRef, col + 32) = (short)p4;
Unsafe.Add(ref blockDataRef, col + 40) = (short)p5;
Unsafe.Add(ref blockDataRef, col + 48) = (short)p6;
Unsafe.Add(ref blockDataRef, col + 56) = (short)p7;
}
// Pass 2: process rows from work array, store into output array.
// Note that we must descale the results by a factor of 8 == 2**3,
// and also undo the pass 1 bits scaling.
for (int row = 0; row < 64; row += 8)
{
p1 = computationBuffer[row + 1];
p2 = computationBuffer[row + 2];
p3 = computationBuffer[row + 3];
p4 = computationBuffer[row + 4];
p5 = computationBuffer[row + 5];
p6 = computationBuffer[row + 6];
p7 = computationBuffer[row + 7];
// Add range center and fudge factor for final descale and range-limit.
int z5 = computationBuffer[row] + (RangeCenter << (Pass1Bits + 3)) + (1 << (Pass1Bits + 2));
// Check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) == 0)
{
byte dcval = Limit[LimitOffset + (RightShift(z5, Pass1Bits + 3) & RangeMask)];
blockData[row] = dcval;
blockData[row + 1] = dcval;
blockData[row + 2] = dcval;
blockData[row + 3] = dcval;
blockData[row + 4] = dcval;
blockData[row + 5] = dcval;
blockData[row + 6] = dcval;
blockData[row + 7] = dcval;
continue;
}
// Even part
int tmp10 = z5 + p4;
int tmp11 = z5 - p4;
int tmp13 = p2 + p6;
int tmp12 = Multiply(p2 - p6, FIX_1_414213562) - tmp13; // 2*c4
int tmp0 = tmp10 + tmp13;
int tmp3 = tmp10 - tmp13;
int tmp1 = tmp11 + tmp12;
int tmp2 = tmp11 - tmp12;
// Odd part
int z13 = p5 + p3;
int z10 = p5 - p3;
int z11 = p1 + p7;
int z12 = p1 - p7;
int tmp7 = z11 + z13; // Phase 5
tmp11 = Multiply(z11 - z13, FIX_1_414213562); // 2*c4
z5 = Multiply(z10 + z12, FIX_1_847759065); // 2*c2
tmp10 = z5 - Multiply(z12, FIX_1_082392200); // 2*(c2-c6)
tmp12 = z5 - Multiply(z10, FIX_2_613125930); // 2*(c2+c6)
int tmp6 = tmp12 - tmp7; // Phase 2
int tmp5 = tmp11 - tmp6;
int tmp4 = tmp10 - tmp5;
// Final output stage: scale down by a factor of 8, offset, and range-limit
blockData[row] = Limit[LimitOffset + (RightShift(tmp0 + tmp7, Pass1Bits + 3) & RangeMask)];
blockData[row + 7] = Limit[LimitOffset + (RightShift(tmp0 - tmp7, Pass1Bits + 3) & RangeMask)];
blockData[row + 1] = Limit[LimitOffset + (RightShift(tmp1 + tmp6, Pass1Bits + 3) & RangeMask)];
blockData[row + 6] = Limit[LimitOffset + (RightShift(tmp1 - tmp6, Pass1Bits + 3) & RangeMask)];
blockData[row + 2] = Limit[LimitOffset + (RightShift(tmp2 + tmp5, Pass1Bits + 3) & RangeMask)];
blockData[row + 5] = Limit[LimitOffset + (RightShift(tmp2 - tmp5, Pass1Bits + 3) & RangeMask)];
blockData[row + 3] = Limit[LimitOffset + (RightShift(tmp3 + tmp4, Pass1Bits + 3) & RangeMask)];
blockData[row + 4] = Limit[LimitOffset + (RightShift(tmp3 - tmp4, Pass1Bits + 3) & RangeMask)];
}
}
/// <summary>
/// Descale and correctly round an int value that's scaled by <paramref name="n"/> bits.
/// We assume <see cref="RightShift"/> rounds towards minus infinity, so adding
/// the fudge factor is correct for either sign of <paramref name="value"/>.
/// </summary>
/// <param name="value">The value</param>
/// <param name="n">The number of bits</param>
/// <returns>The <see cref="int"/></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Descale(int value, int n)
{
return RightShift(value + (1 << (n - 1)), n);
}
/// <summary>
/// Multiply a variable by an int constant, and immediately descale.
/// </summary>
/// <param name="val">The value</param>
/// <param name="c">The multiplier</param>
/// <returns>The <see cref="int"/></returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static int Multiply(int val, int c)
{
return Descale(val * c, ConstBits);
}
/// <summary>

19
src/ImageSharp/Formats/Jpeg/PdfJsPort/PdfJsJpegDecoderCore.cs

@ -793,26 +793,15 @@ namespace SixLabors.ImageSharp.Formats.Jpeg.PdfJsPort
using (IBuffer<short> computationBuffer = this.configuration.MemoryManager.Allocate<short>(64, true))
using (IBuffer<short> multiplicationBuffer = this.configuration.MemoryManager.Allocate<short>(64, true))
{
Span<short> quantizationTable = this.quantizationTables.Tables.GetRowSpan(frameComponent.QuantizationTableIndex);
Span<short> computationBufferSpan = computationBuffer.Span;
// For AA&N IDCT method, multiplier are equal to quantization
// coefficients scaled by scalefactor[row]*scalefactor[col], where
// scalefactor[0] = 1
// scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
// For integer operation, the multiplier table is to be scaled by 12.
Span<short> multiplierSpan = multiplicationBuffer.Span;
// for (int i = 0; i < 64; i++)
// {
// multiplierSpan[i] = (short)IDCT.Descale(quantizationTable[i] * IDCT.Aanscales[i], 12);
// }
ref short quantizationTableRef = ref MemoryMarshal.GetReference(this.quantizationTables.Tables.GetRowSpan(frameComponent.QuantizationTableIndex));
ref short computationBufferSpan = ref MemoryMarshal.GetReference(computationBuffer.Span);
for (int blockRow = 0; blockRow < blocksPerColumn; blockRow++)
{
for (int blockCol = 0; blockCol < blocksPerLine; blockCol++)
{
int offset = GetBlockBufferOffset(ref component, blockRow, blockCol);
PdfJsIDCT.QuantizeAndInverse(frameComponent, offset, ref computationBufferSpan, ref quantizationTable);
PdfJsIDCT.QuantizeAndInverse(frameComponent, offset, ref computationBufferSpan, ref quantizationTableRef);
}
}
}

Loading…
Cancel
Save