📷 A modern, cross-platform, 2D Graphics library for .NET
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

117 lines
3.3 KiB

// Copyright (c) Six Labors.
// Licensed under the Six Labors Split License.
namespace SixLabors.ImageSharp.Tests;
/// <summary>
/// Tests the <see cref="SignedRational"/> struct.
/// </summary>
public class SignedRationalTests
{
/// <summary>
/// Tests the equality operators for equality.
/// </summary>
[Fact]
public void AreEqual()
{
SignedRational r1 = new(3, 2);
SignedRational r2 = new(3, 2);
Assert.Equal(r1, r2);
Assert.True(r1 == r2);
SignedRational r3 = new(7.55);
SignedRational r4 = new(755, 100);
SignedRational r5 = new(151, 20);
Assert.Equal(r3, r4);
Assert.Equal(r4, r5);
}
/// <summary>
/// Tests the equality operators for inequality.
/// </summary>
[Fact]
public void AreNotEqual()
{
SignedRational first = new(0, 100);
SignedRational second = new(100, 100);
Assert.NotEqual(first, second);
Assert.True(first != second);
}
/// <summary>
/// Tests whether the Rational constructor correctly assign properties.
/// </summary>
[Fact]
public void ConstructorAssignsProperties()
{
SignedRational rational = new(7, -55);
Assert.Equal(7, rational.Numerator);
Assert.Equal(-55, rational.Denominator);
rational = new SignedRational(-755, 100);
Assert.Equal(-151, rational.Numerator);
Assert.Equal(20, rational.Denominator);
rational = new SignedRational(-755, -100, false);
Assert.Equal(-755, rational.Numerator);
Assert.Equal(-100, rational.Denominator);
rational = new SignedRational(-151, -20);
Assert.Equal(-151, rational.Numerator);
Assert.Equal(-20, rational.Denominator);
rational = new SignedRational(-7.55);
Assert.Equal(-151, rational.Numerator);
Assert.Equal(20, rational.Denominator);
rational = new SignedRational(7);
Assert.Equal(7, rational.Numerator);
Assert.Equal(1, rational.Denominator);
}
[Fact]
public void Fraction()
{
SignedRational first = new(1.0 / 1600);
SignedRational second = new(1.0 / 1600, true);
Assert.False(first.Equals(second));
}
[Fact]
public void ToDouble()
{
SignedRational rational = new(0, 0);
Assert.Equal(double.NaN, rational.ToDouble());
rational = new SignedRational(2, 0);
Assert.Equal(double.PositiveInfinity, rational.ToDouble());
rational = new SignedRational(-2, 0);
Assert.Equal(double.NegativeInfinity, rational.ToDouble());
}
[Fact]
public void ToStringRepresentation()
{
SignedRational rational = new(0, 0);
Assert.Equal("[ Indeterminate ]", rational.ToString());
rational = new SignedRational(double.PositiveInfinity);
Assert.Equal("[ PositiveInfinity ]", rational.ToString());
rational = new SignedRational(double.NegativeInfinity);
Assert.Equal("[ NegativeInfinity ]", rational.ToString());
rational = new SignedRational(0, 1);
Assert.Equal("0", rational.ToString());
rational = new SignedRational(2, 1);
Assert.Equal("2", rational.ToString());
rational = new SignedRational(1, 2);
Assert.Equal("1/2", rational.ToString());
}
}