📷 A modern, cross-platform, 2D Graphics library for .NET
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

241 lines
10 KiB

// --------------------------------------------------------------------------------------------------------------------
// <copyright file="Quantizer.cs" company="James South">
// Copyright (c) James South.
// Licensed under the Apache License, Version 2.0.
// </copyright>
// <summary>
// Encapsulates methods to calculate the color palette of an image.
// <see href="http://msdn.microsoft.com/en-us/library/aa479306.aspx" />
// </summary>
// --------------------------------------------------------------------------------------------------------------------
namespace ImageProcessor.Imaging.Quantizers
{
using System.Drawing;
using System.Drawing.Imaging;
using ImageProcessor.Imaging.Colors;
/// <summary>
/// Encapsulates methods to calculate the color palette of an image.
/// <see href="http://msdn.microsoft.com/en-us/library/aa479306.aspx"/>
/// </summary>
public unsafe abstract class Quantizer
{
/// <summary>
/// Flag used to indicate whether a single pass or two passes are needed for quantization.
/// </summary>
private readonly bool singlePass;
/// <summary>
/// Initializes a new instance of the <see cref="Quantizer"/> class.
/// </summary>
/// <param name="singlePass">
/// If true, the quantization only needs to loop through the source pixels once
/// </param>
/// <remarks>
/// If you construct this class with a true value for singlePass, then the code will, when quantizing your image,
/// only call the 'QuantizeImage' function. If two passes are required, the code will call 'InitialQuantizeImage'
/// and then 'QuantizeImage'.
/// </remarks>
protected Quantizer(bool singlePass)
{
this.singlePass = singlePass;
}
/// <summary>
/// Quantize an image and return the resulting output bitmap
/// </summary>
/// <param name="source">The image to quantize</param>
/// <returns>A quantized version of the image</returns>
public Bitmap Quantize(Image source)
{
// Get the size of the source image
int height = source.Height;
int width = source.Width;
// And construct a rectangle from these dimensions
Rectangle bounds = new Rectangle(0, 0, width, height);
// First off take a 32bpp copy of the image
Bitmap copy = new Bitmap(width, height, PixelFormat.Format32bppArgb);
copy.SetResolution(source.HorizontalResolution, source.VerticalResolution);
// And construct an 8bpp version
Bitmap output = new Bitmap(width, height, PixelFormat.Format8bppIndexed);
output.SetResolution(source.HorizontalResolution, source.VerticalResolution);
// Now lock the bitmap into memory
using (Graphics g = Graphics.FromImage(copy))
{
g.PageUnit = GraphicsUnit.Pixel;
// Draw the source image onto the copy bitmap,
// which will effect a widening as appropriate.
g.DrawImageUnscaled(source, bounds);
}
// Define a pointer to the bitmap data
BitmapData sourceData = null;
try
{
// Get the source image bits and lock into memory
sourceData = copy.LockBits(bounds, ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);
// Call the FirstPass function if not a single pass algorithm.
// For something like an Octree quantizer, this will run through
// all image pixels, build a data structure, and create a palette.
if (!this.singlePass)
{
this.FirstPass(sourceData, width, height);
}
// Then set the color palette on the output bitmap. I'm passing in the current palette
// as there's no way to construct a new, empty palette.
output.Palette = this.GetPalette(output.Palette);
// Then call the second pass which actually does the conversion
this.SecondPass(sourceData, output, width, height, bounds);
}
finally
{
// Ensure that the bits are unlocked
copy.UnlockBits(sourceData);
}
// Last but not least, return the output bitmap
return output;
}
/// <summary>
/// Execute the first pass through the pixels in the image
/// </summary>
/// <param name="sourceData">The source data</param>
/// <param name="width">The width in pixels of the image</param>
/// <param name="height">The height in pixels of the image</param>
protected virtual void FirstPass(BitmapData sourceData, int width, int height)
{
// Define the source data pointers. The source row is a byte to
// keep addition of the stride value easier (as this is in bytes)
byte* sourceRow = (byte*)sourceData.Scan0.ToPointer();
// Loop through each row
for (int row = 0; row < height; row++)
{
// Set the source pixel to the first pixel in this row
int* sourcePixel = (int*)sourceRow;
// And loop through each column
for (int col = 0; col < width; col++, sourcePixel++)
{
// Now I have the pixel, call the FirstPassQuantize function...
this.InitialQuantizePixel((Color32*)sourcePixel);
}
// Add the stride to the source row
sourceRow += sourceData.Stride;
}
}
/// <summary>
/// Execute a second pass through the bitmap
/// </summary>
/// <param name="sourceData">The source bitmap, locked into memory</param>
/// <param name="output">The output bitmap</param>
/// <param name="width">The width in pixels of the image</param>
/// <param name="height">The height in pixels of the image</param>
/// <param name="bounds">The bounding rectangle</param>
protected virtual void SecondPass(BitmapData sourceData, Bitmap output, int width, int height, Rectangle bounds)
{
BitmapData outputData = null;
try
{
// Lock the output bitmap into memory
outputData = output.LockBits(bounds, ImageLockMode.WriteOnly, PixelFormat.Format8bppIndexed);
// Define the source data pointers. The source row is a byte to
// keep addition of the stride value easier (as this is in bytes)
byte* sourceRow = (byte*)sourceData.Scan0.ToPointer();
int* sourcePixel = (int*)sourceRow;
int* previousPixel = sourcePixel;
// Now define the destination data pointers
byte* destinationRow = (byte*)outputData.Scan0.ToPointer();
byte* destinationPixel = destinationRow;
// And convert the first pixel, so that I have values going into the loop
byte pixelValue = this.QuantizePixel((Color32*)sourcePixel);
// Assign the value of the first pixel
*destinationPixel = pixelValue;
// Loop through each row
for (int row = 0; row < height; row++)
{
// Set the source pixel to the first pixel in this row
sourcePixel = (int*)sourceRow;
// And set the destination pixel pointer to the first pixel in the row
destinationPixel = destinationRow;
// Loop through each pixel on this scan line
for (int col = 0; col < width; col++, sourcePixel++, destinationPixel++)
{
// Check if this is the same as the last pixel. If so use that value
// rather than calculating it again. This is an inexpensive optimisation.
if (*previousPixel != *sourcePixel)
{
// Quantize the pixel
pixelValue = this.QuantizePixel((Color32*)sourcePixel);
// And setup the previous pointer
previousPixel = sourcePixel;
}
// And set the pixel in the output
*destinationPixel = pixelValue;
}
// Add the stride to the source row
sourceRow += sourceData.Stride;
// And to the destination row
destinationRow += outputData.Stride;
}
}
finally
{
// Ensure that I unlock the output bits
output.UnlockBits(outputData);
}
}
/// <summary>
/// Override this to process the pixel in the first pass of the algorithm
/// </summary>
/// <param name="pixel">The pixel to quantize</param>
/// <remarks>
/// This function need only be overridden if your quantize algorithm needs two passes,
/// such as an Octree quantizer.
/// </remarks>
protected virtual void InitialQuantizePixel(Color32* pixel)
{
}
/// <summary>
/// Override this to process the pixel in the second pass of the algorithm
/// </summary>
/// <param name="pixel">The pixel to quantize</param>
/// <returns>The quantized value</returns>
protected abstract byte QuantizePixel(Color32* pixel);
/// <summary>
/// Retrieve the palette for the quantized image
/// </summary>
/// <param name="original">Any old palette, this is overwritten</param>
/// <returns>The new color palette</returns>
protected abstract ColorPalette GetPalette(ColorPalette original);
}
}