📷 A modern, cross-platform, 2D Graphics library for .NET
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

309 lines
8.4 KiB

// Copyright (c) Six Labors.
// Licensed under the Apache License, Version 2.0.
using System;
using System.Linq;
using System.Numerics;
using Xunit;
namespace SixLabors.ImageSharp.Tests.Helpers
{
public class NumericsTests
{
private delegate void SpanAction<T, in TArg, in TArg1>(Span<T> span, TArg arg, TArg1 arg1);
private readonly ApproximateFloatComparer approximateFloatComparer = new ApproximateFloatComparer(1e-6f);
[Theory]
[InlineData(0)]
[InlineData(1)]
[InlineData(2)]
[InlineData(3)]
[InlineData(4)]
[InlineData(100)]
[InlineData(123)]
[InlineData(53436353)]
public void Modulo2(int x)
{
int actual = Numerics.Modulo2(x);
Assert.Equal(x % 2, actual);
}
[Theory]
[InlineData(0)]
[InlineData(1)]
[InlineData(2)]
[InlineData(3)]
[InlineData(4)]
[InlineData(100)]
[InlineData(123)]
[InlineData(53436353)]
public void Modulo4(int x)
{
int actual = Numerics.Modulo4(x);
Assert.Equal(x % 4, actual);
}
[Theory]
[InlineData(0)]
[InlineData(1)]
[InlineData(2)]
[InlineData(6)]
[InlineData(7)]
[InlineData(8)]
[InlineData(100)]
[InlineData(123)]
[InlineData(53436353)]
[InlineData(975)]
public void Modulo8(int x)
{
int actual = Numerics.Modulo8(x);
Assert.Equal(x % 8, actual);
}
[Theory]
[InlineData(0, 2)]
[InlineData(1, 2)]
[InlineData(2, 2)]
[InlineData(0, 4)]
[InlineData(3, 4)]
[InlineData(5, 4)]
[InlineData(5, 8)]
[InlineData(8, 8)]
[InlineData(8, 16)]
[InlineData(15, 16)]
[InlineData(17, 16)]
[InlineData(17, 32)]
[InlineData(31, 32)]
[InlineData(32, 32)]
[InlineData(33, 32)]
public void Modulo2P(int x, int m)
{
int actual = Numerics.ModuloP2(x, m);
Assert.Equal(x % m, actual);
}
[Theory]
[InlineData(-5)]
[InlineData(-17)]
[InlineData(-12856)]
[InlineData(-32)]
[InlineData(-7425)]
[InlineData(5)]
[InlineData(17)]
[InlineData(12856)]
[InlineData(32)]
[InlineData(7425)]
public void Abs(int x)
{
int expected = Math.Abs(x);
Assert.Equal(expected, Numerics.Abs(x));
}
[Theory]
[InlineData(-5)]
[InlineData(-17)]
[InlineData(-12856)]
[InlineData(-32)]
[InlineData(-7425)]
[InlineData(5)]
[InlineData(17)]
[InlineData(12856)]
[InlineData(32)]
[InlineData(7425)]
public void Pow2(float x)
{
float expected = (float)Math.Pow(x, 2);
Assert.Equal(expected, Numerics.Pow2(x));
}
[Theory]
[InlineData(-5)]
[InlineData(-17)]
[InlineData(-12856)]
[InlineData(-32)]
[InlineData(5)]
[InlineData(17)]
[InlineData(12856)]
[InlineData(32)]
public void Pow3(float x)
{
float expected = (float)Math.Pow(x, 3);
Assert.Equal(expected, Numerics.Pow3(x));
}
[Theory]
[InlineData(1, 1, 1)]
[InlineData(1, 42, 1)]
[InlineData(10, 8, 2)]
[InlineData(12, 18, 6)]
[InlineData(4536, 1000, 8)]
[InlineData(1600, 1024, 64)]
public void GreatestCommonDivisor(int a, int b, int expected)
{
int actual = Numerics.GreatestCommonDivisor(a, b);
Assert.Equal(expected, actual);
}
[Theory]
[InlineData(1, 1, 1)]
[InlineData(1, 42, 42)]
[InlineData(3, 4, 12)]
[InlineData(6, 4, 12)]
[InlineData(1600, 1024, 25600)]
[InlineData(3264, 100, 81600)]
public void LeastCommonMultiple(int a, int b, int expected)
{
int actual = Numerics.LeastCommonMultiple(a, b);
Assert.Equal(expected, actual);
}
[Theory]
[InlineData(0)]
[InlineData(1)]
[InlineData(30)]
[InlineData(63)]
public void PremultiplyVectorSpan(int length)
{
var rnd = new Random(42);
Vector4[] source = rnd.GenerateRandomVectorArray(length, 0, 1);
Vector4[] expected = source.Select(v =>
{
Numerics.Premultiply(ref v);
return v;
}).ToArray();
Numerics.Premultiply(source);
Assert.Equal(expected, source, this.approximateFloatComparer);
}
[Theory]
[InlineData(0)]
[InlineData(1)]
[InlineData(30)]
[InlineData(63)]
public void UnPremultiplyVectorSpan(int length)
{
var rnd = new Random(42);
Vector4[] source = rnd.GenerateRandomVectorArray(length, 0, 1);
Vector4[] expected = source.Select(v =>
{
Numerics.UnPremultiply(ref v);
return v;
}).ToArray();
Numerics.UnPremultiply(source);
Assert.Equal(expected, source, this.approximateFloatComparer);
}
[Theory]
[InlineData(64, 36, 96)]
[InlineData(128, 16, 196)]
[InlineData(567, 18, 142)]
[InlineData(1024, 0, 255)]
public void ClampByte(int length, byte min, byte max)
{
TestClampSpan(
length,
min,
max,
(s, m1, m2) => Numerics.Clamp(s, m1, m2),
(v, m1, m2) => Numerics.Clamp(v, m1, m2));
}
[Theory]
[InlineData(64, 36, 96)]
[InlineData(128, 16, 196)]
[InlineData(567, 18, 142)]
[InlineData(1024, 0, 255)]
public void ClampInt(int length, int min, int max)
{
TestClampSpan(
length,
min,
max,
(s, m1, m2) => Numerics.Clamp(s, m1, m2),
(v, m1, m2) => Numerics.Clamp(v, m1, m2));
}
[Theory]
[InlineData(64, 36, 96)]
[InlineData(128, 16, 196)]
[InlineData(567, 18, 142)]
[InlineData(1024, 0, 255)]
public void ClampUInt(int length, uint min, uint max)
{
TestClampSpan(
length,
min,
max,
(s, m1, m2) => Numerics.Clamp(s, m1, m2),
(v, m1, m2) => Numerics.Clamp(v, m1, m2));
}
[Theory]
[InlineData(64, 36, 96)]
[InlineData(128, 16, 196)]
[InlineData(567, 18, 142)]
[InlineData(1024, 0, 255)]
public void ClampFloat(int length, float min, float max)
{
TestClampSpan(
length,
min,
max,
(s, m1, m2) => Numerics.Clamp(s, m1, m2),
(v, m1, m2) => Numerics.Clamp(v, m1, m2));
}
[Theory]
[InlineData(64, 36, 96)]
[InlineData(128, 16, 196)]
[InlineData(567, 18, 142)]
[InlineData(1024, 0, 255)]
public void ClampDouble(int length, double min, double max)
{
TestClampSpan(
length,
min,
max,
(s, m1, m2) => Numerics.Clamp(s, m1, m2),
(v, m1, m2) => Numerics.Clamp(v, m1, m2));
}
private static void TestClampSpan<T>(
int length,
T min,
T max,
SpanAction<T, T, T> clampAction,
Func<T, T, T, T> refClampFunc)
where T : unmanaged, IComparable<T>
{
Span<T> actual = new T[length];
var r = new Random();
for (int i = 0; i < length; i++)
{
actual[i] = (T)Convert.ChangeType(r.Next(byte.MinValue, byte.MaxValue), typeof(T));
}
Span<T> expected = new T[length];
actual.CopyTo(expected);
for (int i = 0; i < expected.Length; i++)
{
ref T v = ref expected[i];
v = refClampFunc(v, min, max);
}
clampAction(actual, min, max);
for (int i = 0; i < expected.Length; i++)
{
Assert.Equal(expected[i], actual[i]);
}
}
}
}