mirror of https://github.com/SixLabors/ImageSharp
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.7 KiB
140 lines
4.7 KiB
// <copyright file="GaussianBlurProcessor.cs" company="James Jackson-South">
|
|
// Copyright (c) James Jackson-South and contributors.
|
|
// Licensed under the Apache License, Version 2.0.
|
|
// </copyright>
|
|
|
|
namespace ImageSharp.Processing.Processors
|
|
{
|
|
using System;
|
|
|
|
/// <summary>
|
|
/// Applies a Gaussian blur sampler to the image.
|
|
/// </summary>
|
|
/// <typeparam name="TColor">The pixel format.</typeparam>
|
|
public class GaussianBlurProcessor<TColor> : ImageProcessor<TColor>
|
|
where TColor : struct, IPackedPixel, IEquatable<TColor>
|
|
{
|
|
/// <summary>
|
|
/// The maximum size of the kernel in either direction.
|
|
/// </summary>
|
|
private readonly int kernelSize;
|
|
|
|
/// <summary>
|
|
/// The spread of the blur.
|
|
/// </summary>
|
|
private readonly float sigma;
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="GaussianBlurProcessor{TColor}"/> class.
|
|
/// </summary>
|
|
/// <param name="sigma">The 'sigma' value representing the weight of the blur.</param>
|
|
public GaussianBlurProcessor(float sigma = 3f)
|
|
{
|
|
this.kernelSize = ((int)Math.Ceiling(sigma) * 2) + 1;
|
|
this.sigma = sigma;
|
|
this.KernelX = this.CreateGaussianKernel(true);
|
|
this.KernelY = this.CreateGaussianKernel(false);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="GaussianBlurProcessor{TColor}"/> class.
|
|
/// </summary>
|
|
/// <param name="radius">
|
|
/// The 'radius' value representing the size of the area to sample.
|
|
/// </param>
|
|
public GaussianBlurProcessor(int radius)
|
|
{
|
|
this.kernelSize = (radius * 2) + 1;
|
|
this.sigma = radius;
|
|
this.KernelX = this.CreateGaussianKernel(true);
|
|
this.KernelY = this.CreateGaussianKernel(false);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="GaussianBlurProcessor{TColor}"/> class.
|
|
/// </summary>
|
|
/// <param name="sigma">
|
|
/// The 'sigma' value representing the weight of the blur.
|
|
/// </param>
|
|
/// <param name="radius">
|
|
/// The 'radius' value representing the size of the area to sample.
|
|
/// This should be at least twice the sigma value.
|
|
/// </param>
|
|
public GaussianBlurProcessor(float sigma, int radius)
|
|
{
|
|
this.kernelSize = (radius * 2) + 1;
|
|
this.sigma = sigma;
|
|
this.KernelX = this.CreateGaussianKernel(true);
|
|
this.KernelY = this.CreateGaussianKernel(false);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the horizontal gradient operator.
|
|
/// </summary>
|
|
public float[][] KernelX { get; }
|
|
|
|
/// <summary>
|
|
/// Gets the vertical gradient operator.
|
|
/// </summary>
|
|
public float[][] KernelY { get; }
|
|
|
|
/// <inheritdoc/>
|
|
protected override void OnApply(ImageBase<TColor> source, Rectangle sourceRectangle)
|
|
{
|
|
new Convolution2PassProcessor<TColor>(this.KernelX, this.KernelY).Apply(source, sourceRectangle);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create a 1 dimensional Gaussian kernel using the Gaussian G(x) function
|
|
/// </summary>
|
|
/// <param name="horizontal">Whether to calculate a horizontal kernel.</param>
|
|
/// <returns>The <see cref="T:float[][]"/></returns>
|
|
private float[][] CreateGaussianKernel(bool horizontal)
|
|
{
|
|
int size = this.kernelSize;
|
|
float weight = this.sigma;
|
|
float[][] kernel = horizontal ? new float[1][] : new float[size][];
|
|
|
|
if (horizontal)
|
|
{
|
|
kernel[0] = new float[size];
|
|
}
|
|
|
|
float sum = 0.0f;
|
|
|
|
float midpoint = (size - 1) / 2f;
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
float x = i - midpoint;
|
|
float gx = ImageMaths.Gaussian(x, weight);
|
|
sum += gx;
|
|
if (horizontal)
|
|
{
|
|
kernel[0][i] = gx;
|
|
}
|
|
else
|
|
{
|
|
kernel[i] = new[] { gx };
|
|
}
|
|
}
|
|
|
|
// Normalise kernel so that the sum of all weights equals 1
|
|
if (horizontal)
|
|
{
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
kernel[0][i] = kernel[0][i] / sum;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
kernel[i][0] = kernel[i][0] / sum;
|
|
}
|
|
}
|
|
|
|
return kernel;
|
|
}
|
|
}
|
|
}
|