📷 A modern, cross-platform, 2D Graphics library for .NET
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

466 lines
14 KiB

// <copyright file="Block8x8FTests.cs" company="James Jackson-South">
// Copyright (c) James Jackson-South and contributors.
// Licensed under the Apache License, Version 2.0.
// </copyright>
// Uncomment this to turn unit tests into benchmarks:
//#define BENCHMARKING
// ReSharper disable InconsistentNaming
namespace ImageSharp.Tests
{
using System.Diagnostics;
using System.Numerics;
using ImageSharp.Formats;
using ImageSharp.Formats.Jpg;
using Xunit;
using Xunit.Abstractions;
public class Block8x8FTests : JpegUtilityTestFixture
{
#if BENCHMARKING
public const int Times = 1000000;
#else
public const int Times = 1;
#endif
public Block8x8FTests(ITestOutputHelper output)
: base(output)
{
}
[Fact]
public void Indexer()
{
float sum = 0;
this.Measure(
Times,
() =>
{
Block8x8F block = new Block8x8F();
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
block[i] = i;
}
sum = 0;
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
sum += block[i];
}
});
Assert.Equal(sum, 64f * 63f * 0.5f);
}
[Fact]
public unsafe void Indexer_GetScalarAt_SetScalarAt()
{
float sum = 0;
this.Measure(
Times,
() =>
{
Block8x8F block = new Block8x8F();
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
Block8x8F.SetScalarAt(&block, i, i);
}
sum = 0;
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
sum += Block8x8F.GetScalarAt(&block, i);
}
});
Assert.Equal(sum, 64f * 63f * 0.5f);
}
[Fact]
public void Indexer_ReferenceBenchmarkWithArray()
{
float sum = 0;
this.Measure(
Times,
() =>
{
// Block8x8F block = new Block8x8F();
float[] block = new float[64];
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
block[i] = i;
}
sum = 0;
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
sum += block[i];
}
});
Assert.Equal(sum, 64f * 63f * 0.5f);
}
[Fact]
public void Load_Store_FloatArray()
{
float[] data = new float[Block8x8F.ScalarCount];
float[] mirror = new float[Block8x8F.ScalarCount];
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
data[i] = i;
}
this.Measure(
Times,
() =>
{
Block8x8F b = new Block8x8F();
b.LoadFrom(data);
b.CopyTo(mirror);
});
Assert.Equal(data, mirror);
// PrintLinearData((MutableSpan<float>)mirror);
}
[Fact]
public unsafe void Load_Store_FloatArray_Ptr()
{
float[] data = new float[Block8x8F.ScalarCount];
float[] mirror = new float[Block8x8F.ScalarCount];
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
data[i] = i;
}
this.Measure(
Times,
() =>
{
Block8x8F b = new Block8x8F();
Block8x8F.LoadFrom(&b, data);
Block8x8F.CopyTo(&b, mirror);
});
Assert.Equal(data, mirror);
// PrintLinearData((MutableSpan<float>)mirror);
}
[Fact]
public void Load_Store_IntArray()
{
int[] data = new int[Block8x8F.ScalarCount];
int[] mirror = new int[Block8x8F.ScalarCount];
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
data[i] = i;
}
this.Measure(
Times,
() =>
{
Block8x8F v = new Block8x8F();
v.LoadFrom(data);
v.CopyTo(mirror);
});
Assert.Equal(data, mirror);
// PrintLinearData((MutableSpan<int>)mirror);
}
[Fact]
public void TransposeInto()
{
float[] expected = Create8x8FloatData();
ReferenceImplementations.Transpose8x8(expected);
Block8x8F source = new Block8x8F();
source.LoadFrom(Create8x8FloatData());
Block8x8F dest = new Block8x8F();
source.TransposeInto(ref dest);
float[] actual = new float[64];
dest.CopyTo(actual);
Assert.Equal(expected, actual);
}
private class BufferHolder
{
public Block8x8F Buffer;
}
[Fact]
public void TranposeInto_Benchmark()
{
BufferHolder source = new BufferHolder();
source.Buffer.LoadFrom(Create8x8FloatData());
BufferHolder dest = new BufferHolder();
this.Output.WriteLine($"TranposeInto_PinningImpl_Benchmark X {Times} ...");
Stopwatch sw = Stopwatch.StartNew();
for (int i = 0; i < Times; i++)
{
source.Buffer.TransposeInto(ref dest.Buffer);
}
sw.Stop();
this.Output.WriteLine($"TranposeInto_PinningImpl_Benchmark finished in {sw.ElapsedMilliseconds} ms");
}
[Fact]
public void iDCT2D8x4_LeftPart()
{
float[] sourceArray = Create8x8FloatData();
float[] expectedDestArray = new float[64];
ReferenceImplementations.iDCT2D8x4_32f(sourceArray, expectedDestArray);
Block8x8F source = new Block8x8F();
source.LoadFrom(sourceArray);
Block8x8F dest = new Block8x8F();
DCT.IDCT8x4_LeftPart(ref source, ref dest);
float[] actualDestArray = new float[64];
dest.CopyTo(actualDestArray);
this.Print8x8Data(expectedDestArray);
this.Output.WriteLine("**************");
this.Print8x8Data(actualDestArray);
Assert.Equal(expectedDestArray, actualDestArray);
}
[Fact]
public void iDCT2D8x4_RightPart()
{
MutableSpan<float> sourceArray = Create8x8FloatData();
MutableSpan<float> expectedDestArray = new float[64];
ReferenceImplementations.iDCT2D8x4_32f(sourceArray.Slice(4), expectedDestArray.Slice(4));
Block8x8F source = new Block8x8F();
source.LoadFrom(sourceArray);
Block8x8F dest = new Block8x8F();
DCT.IDCT8x4_RightPart(ref source, ref dest);
float[] actualDestArray = new float[64];
dest.CopyTo(actualDestArray);
this.Print8x8Data(expectedDestArray);
this.Output.WriteLine("**************");
this.Print8x8Data(actualDestArray);
Assert.Equal(expectedDestArray.Data, actualDestArray);
}
[Theory]
[InlineData(1)]
[InlineData(2)]
[InlineData(3)]
public void TransformIDCT(int seed)
{
MutableSpan<float> sourceArray = Create8x8RandomFloatData(-200, 200, seed);
float[] expectedDestArray = new float[64];
float[] tempArray = new float[64];
ReferenceImplementations.iDCT2D_llm(sourceArray, expectedDestArray, tempArray);
// ReferenceImplementations.iDCT8x8_llm_sse(sourceArray, expectedDestArray, tempArray);
Block8x8F source = new Block8x8F();
source.LoadFrom(sourceArray);
Block8x8F dest = new Block8x8F();
Block8x8F tempBuffer = new Block8x8F();
DCT.TransformIDCT(ref source, ref dest, ref tempBuffer);
float[] actualDestArray = new float[64];
dest.CopyTo(actualDestArray);
this.Print8x8Data(expectedDestArray);
this.Output.WriteLine("**************");
this.Print8x8Data(actualDestArray);
Assert.Equal(expectedDestArray, actualDestArray, new ApproximateFloatComparer(1f));
Assert.Equal(expectedDestArray, actualDestArray, new ApproximateFloatComparer(1f));
}
[Fact]
public unsafe void CopyColorsTo()
{
float[] data = Create8x8FloatData();
Block8x8F block = new Block8x8F();
block.LoadFrom(data);
block.MultiplyAllInplace(5);
int stride = 256;
int height = 42;
int offset = height * 10 + 20;
byte[] colorsExpected = new byte[stride * height];
byte[] colorsActual = new byte[stride * height];
Block8x8F temp = new Block8x8F();
ReferenceImplementations.CopyColorsTo(ref block, new MutableSpan<byte>(colorsExpected, offset), stride);
block.CopyColorsTo(new MutableSpan<byte>(colorsActual, offset), stride, &temp);
// Output.WriteLine("******* EXPECTED: *********");
// PrintLinearData(colorsExpected);
// Output.WriteLine("******** ACTUAL: **********");
Assert.Equal(colorsExpected, colorsActual);
}
private static float[] Create8x8ColorCropTestData()
{
float[] result = new float[64];
for (int i = 0; i < 8; i++)
{
for (int j = 0; j < 8; j++)
{
result[i * 8 + j] = -300 + i * 100 + j * 10;
}
}
return result;
}
[Fact]
public void TransformByteConvetibleColorValuesInto()
{
Block8x8F block = new Block8x8F();
float[] input = Create8x8ColorCropTestData();
block.LoadFrom(input);
this.Output.WriteLine("Input:");
this.PrintLinearData(input);
Block8x8F dest = new Block8x8F();
block.TransformByteConvetibleColorValuesInto(ref dest);
float[] array = new float[64];
dest.CopyTo(array);
this.Output.WriteLine("Result:");
this.PrintLinearData(array);
foreach (float val in array)
{
Assert.InRange(val, 0, 255);
}
}
[Theory]
[InlineData(1)]
[InlineData(2)]
public void FDCT8x4_LeftPart(int seed)
{
MutableSpan<float> src = Create8x8RandomFloatData(-200, 200, seed);
Block8x8F srcBlock = new Block8x8F();
srcBlock.LoadFrom(src);
Block8x8F destBlock = new Block8x8F();
MutableSpan<float> expectedDest = new MutableSpan<float>(64);
ReferenceImplementations.fDCT2D8x4_32f(src, expectedDest);
DCT.FDCT8x4_LeftPart(ref srcBlock, ref destBlock);
MutableSpan<float> actualDest = new MutableSpan<float>(64);
destBlock.CopyTo(actualDest);
Assert.Equal(actualDest.Data, expectedDest.Data, new ApproximateFloatComparer(1f));
}
[Theory]
[InlineData(1)]
[InlineData(2)]
public void FDCT8x4_RightPart(int seed)
{
MutableSpan<float> src = Create8x8RandomFloatData(-200, 200, seed);
Block8x8F srcBlock = new Block8x8F();
srcBlock.LoadFrom(src);
Block8x8F destBlock = new Block8x8F();
MutableSpan<float> expectedDest = new MutableSpan<float>(64);
ReferenceImplementations.fDCT2D8x4_32f(src.Slice(4), expectedDest.Slice(4));
DCT.FDCT8x4_RightPart(ref srcBlock, ref destBlock);
MutableSpan<float> actualDest = new MutableSpan<float>(64);
destBlock.CopyTo(actualDest);
Assert.Equal(actualDest.Data, expectedDest.Data, new ApproximateFloatComparer(1f));
}
[Theory]
[InlineData(1)]
[InlineData(2)]
public void TransformFDCT(int seed)
{
MutableSpan<float> src = Create8x8RandomFloatData(-200, 200, seed);
Block8x8F srcBlock = new Block8x8F();
srcBlock.LoadFrom(src);
Block8x8F destBlock = new Block8x8F();
MutableSpan<float> expectedDest = new MutableSpan<float>(64);
MutableSpan<float> temp1 = new MutableSpan<float>(64);
Block8x8F temp2 = new Block8x8F();
ReferenceImplementations.fDCT2D_llm(src, expectedDest, temp1, downscaleBy8: true);
DCT.TransformFDCT(ref srcBlock, ref destBlock, ref temp2, false);
MutableSpan<float> actualDest = new MutableSpan<float>(64);
destBlock.CopyTo(actualDest);
Assert.Equal(actualDest.Data, expectedDest.Data, new ApproximateFloatComparer(1f));
}
[Theory]
[InlineData(1)]
[InlineData(2)]
public unsafe void UnzigDivRound(int seed)
{
Block8x8F block = new Block8x8F();
block.LoadFrom(Create8x8RandomFloatData(-2000, 2000, seed));
Block8x8F qt = new Block8x8F();
qt.LoadFrom(Create8x8RandomFloatData(-2000, 2000, seed));
UnzigData unzig = UnzigData.Create();
int* expectedResults = stackalloc int[Block8x8F.ScalarCount];
ReferenceImplementations.UnZigDivRoundRational(&block, expectedResults, &qt, unzig.Data);
Block8x8F actualResults = default(Block8x8F);
Block8x8F.UnzigDivRound(&block, &actualResults, &qt, unzig.Data);
for (int i = 0; i < Block8x8F.ScalarCount; i++)
{
int expected = expectedResults[i];
int actual = (int)actualResults[i];
Assert.Equal(expected, actual);
}
}
}
}