diff --git a/src/Numerics/Distributions/BetaBinomial.cs b/src/Numerics/Distributions/BetaBinomial.cs
index 13d450fc..af9661bf 100644
--- a/src/Numerics/Distributions/BetaBinomial.cs
+++ b/src/Numerics/Distributions/BetaBinomial.cs
@@ -3,7 +3,7 @@
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
-// Copyright (c) 2009-2014 Math.NET
+// Copyright (c) 2009-2020 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
@@ -141,17 +141,17 @@ namespace MathNet.Numerics.Distributions
///
/// Gets the mean of the distribution.
///
- double IUnivariateDistribution.Mean => (_n * _a) / (_a + _b);
+ public double Mean => (_n * _a) / (_a + _b);
///
/// Gets the variance of the distribution.
///
- double IUnivariateDistribution.Variance => (_n*_a*_b*(_a+_b+_n))/(Math.Pow((_a+_b),2) * (_a+_b+1));
+ public double Variance => (_n*_a*_b*(_a+_b+_n))/(Math.Pow((_a+_b),2) * (_a+_b+1));
///
/// Gets the standard deviation of the distribution.
///
- double IUnivariateDistribution.StdDev => Math.Sqrt((_n * _a * _b * (_a + _b + _n)) / (Math.Pow((_a + _b), 2) * (_a + _b + 1)));
+ public double StdDev => Math.Sqrt((_n * _a * _b * (_a + _b + _n)) / (Math.Pow((_a + _b), 2) * (_a + _b + 1)));
///
/// Gets the entropy of the distribution.
@@ -161,14 +161,14 @@ namespace MathNet.Numerics.Distributions
///
/// Gets the skewness of the distribution.
///
- double IUnivariateDistribution.Skewness =>
+ public double Skewness =>
(_a + _b + 2 * _n) * (_b - _a) / (_a + _b + 2) * Math.Sqrt((1 + _a + _b) / (_n * _a * _b * (_n + _a + _b)));
///
/// Gets the mode of the distribution
///
int IDiscreteDistribution.Mode => throw new NotSupportedException();
-
+
///
/// Gets the median of the distribution.
///
@@ -235,7 +235,7 @@ namespace MathNet.Numerics.Distributions
}
else
{
- return Math.Exp(PMFLn(n, a, b, k));
+ return Math.Exp(PMFLn(n, a, b, k));
}
}
@@ -330,7 +330,7 @@ namespace MathNet.Numerics.Distributions
///
/// Fills an array with samples generated from the distribution.
///
- public void Samples(int[] values)
+ public void Samples(int[] values)
{
SamplesUnchecked(_random, values, _n, _a, _b);
}
diff --git a/src/Numerics/SpecialFunctions/GeneralizedHyperGeometric.cs b/src/Numerics/SpecialFunctions/GeneralizedHyperGeometric.cs
index 5a7c9e9d..8313f2f6 100644
--- a/src/Numerics/SpecialFunctions/GeneralizedHyperGeometric.cs
+++ b/src/Numerics/SpecialFunctions/GeneralizedHyperGeometric.cs
@@ -3,7 +3,7 @@
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
-// Copyright (c) 2009-2010 Math.NET
+// Copyright (c) 2009-2020 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
@@ -38,16 +38,13 @@ namespace MathNet.Numerics
{
public static partial class SpecialFunctions
{
-
//Rising and falling factorials - reference here:
//https://en.wikipedia.org/wiki/Falling_and_rising_factorials
-
///
/// Computes the Rising Factorial (Pochhammer function) x -> (x)n, n>= 0. see: https://en.wikipedia.org/wiki/Falling_and_rising_factorials
///
/// The real value of the Rising Factorial for x and n
-
public static double RisingFactorial(double x, int n)
{
double accumulator = 1.0;
@@ -73,7 +70,6 @@ namespace MathNet.Numerics
}
return accumulator;
}
- //
///
/// A generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n.
@@ -137,7 +133,7 @@ namespace MathNet.Numerics
}
else
{
- return incrementAs / incrementBs * Math.Pow(z, currentN) / Factorial(currentN);
+ return incrementAs / incrementBs * Math.Pow(z, currentN) / Factorial(currentN);
}
}