4 changed files with 319 additions and 0 deletions
@ -0,0 +1,251 @@ |
|||
// <copyright file="MovingStatistics.cs" company="Math.NET">
|
|||
// Math.NET Numerics, part of the Math.NET Project
|
|||
// http://numerics.mathdotnet.com
|
|||
// http://github.com/mathnet/mathnet-numerics
|
|||
// http://mathnetnumerics.codeplex.com
|
|||
//
|
|||
// Copyright (c) 2009-2015 Math.NET
|
|||
//
|
|||
// Permission is hereby granted, free of charge, to any person
|
|||
// obtaining a copy of this software and associated documentation
|
|||
// files (the "Software"), to deal in the Software without
|
|||
// restriction, including without limitation the rights to use,
|
|||
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|||
// copies of the Software, and to permit persons to whom the
|
|||
// Software is furnished to do so, subject to the following
|
|||
// conditions:
|
|||
//
|
|||
// The above copyright notice and this permission notice shall be
|
|||
// included in all copies or substantial portions of the Software.
|
|||
//
|
|||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|||
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|||
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|||
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|||
// OTHER DEALINGS IN THE SOFTWARE.
|
|||
// </copyright>
|
|||
|
|||
using System; |
|||
using System.Collections.Generic; |
|||
using MathNet.Numerics.Properties; |
|||
|
|||
namespace MathNet.Numerics.Statistics |
|||
{ |
|||
/// <summary>
|
|||
/// Running statistics over a window of data, allows updating by adding values.
|
|||
/// </summary>
|
|||
public class MovingStatistics |
|||
{ |
|||
readonly double[] _oldValues; |
|||
readonly int _windowSize; |
|||
int _lastIndex; |
|||
double _m1; |
|||
double _m2; |
|||
double _m3; |
|||
double _m4; |
|||
double _max = double.NegativeInfinity; |
|||
double _min = double.PositiveInfinity; |
|||
|
|||
public MovingStatistics(int windowSize) |
|||
{ |
|||
if (windowSize < 1) |
|||
{ |
|||
throw new ArgumentException(string.Format(Resources.ArgumentMustBePositive), "windowSize"); |
|||
} |
|||
_windowSize = windowSize; |
|||
_oldValues = new double[_windowSize]; |
|||
} |
|||
|
|||
public MovingStatistics(int windowSize, IEnumerable<double> values) : this(windowSize) |
|||
{ |
|||
PushRange(values); |
|||
} |
|||
|
|||
public int WindowSize |
|||
{ |
|||
get { return _windowSize; } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Gets the total number of samples.
|
|||
/// </summary>
|
|||
public long Count { get; private set; } |
|||
|
|||
/// <summary>
|
|||
/// Returns the minimum value in the sample data.
|
|||
/// Returns NaN if data is empty or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double Minimum |
|||
{ |
|||
get { return Count > 0 ? _min : double.NaN; } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Returns the maximum value in the sample data.
|
|||
/// Returns NaN if data is empty or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double Maximum |
|||
{ |
|||
get { return Count > 0 ? _max : double.NaN; } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Evaluates the sample mean, an estimate of the population mean.
|
|||
/// Returns NaN if data is empty or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double Mean |
|||
{ |
|||
get { return Count > 0 ? _m1 : double.NaN; } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Estimates the unbiased population variance from the provided samples.
|
|||
/// On a dataset of size N will use an N-1 normalizer (Bessel's correction).
|
|||
/// Returns NaN if data has less than two entries or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double Variance |
|||
{ |
|||
get { return Count < 2 ? double.NaN : _m2/(Count - 1); } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Evaluates the variance from the provided full population.
|
|||
/// On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset.
|
|||
/// Returns NaN if data is empty or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double PopulationVariance |
|||
{ |
|||
get { return Count < 2 ? double.NaN : _m2/Count; } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Estimates the unbiased population standard deviation from the provided samples.
|
|||
/// On a dataset of size N will use an N-1 normalizer (Bessel's correction).
|
|||
/// Returns NaN if data has less than two entries or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double StandardDeviation |
|||
{ |
|||
get { return Count < 2 ? double.NaN : Math.Sqrt(_m2/(Count - 1)); } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Evaluates the standard deviation from the provided full population.
|
|||
/// On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset.
|
|||
/// Returns NaN if data is empty or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double PopulationStandardDeviation |
|||
{ |
|||
get { return Count < 2 ? double.NaN : Math.Sqrt(_m2/Count); } |
|||
} |
|||
|
|||
/* /// <summary>
|
|||
/// Estimates the unbiased population skewness from the provided samples.
|
|||
/// Uses a normalizer (Bessel's correction; type 2).
|
|||
/// Returns NaN if data has less than three entries or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double Skewness |
|||
{ |
|||
get { return Count < 3 ? double.NaN : (Count*_m3*Math.Sqrt(_m2/(Count - 1))/(_m2*_m2*(Count - 2)))*(Count - 1); } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Evaluates the population skewness from the full population.
|
|||
/// Does not use a normalizer and would thus be biased if applied to a subset (type 1).
|
|||
/// Returns NaN if data has less than two entries or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double PopulationSkewness |
|||
{ |
|||
get { return Count < 2 ? double.NaN : Math.Sqrt(Count)*_m3/Math.Pow(_m2, 1.5); } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Estimates the unbiased population kurtosis from the provided samples.
|
|||
/// Uses a normalizer (Bessel's correction; type 2).
|
|||
/// Returns NaN if data has less than four entries or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double Kurtosis |
|||
{ |
|||
get { return Count < 4 ? double.NaN : ((double) Count*Count - 1)/((Count - 2)*(Count - 3))*(Count*_m4/(_m2*_m2) - 3 + 6.0/(Count + 1)); } |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Evaluates the population kurtosis from the full population.
|
|||
/// Does not use a normalizer and would thus be biased if applied to a subset (type 1).
|
|||
/// Returns NaN if data has less than three entries or if any entry is NaN.
|
|||
/// </summary>
|
|||
public double PopulationKurtosis |
|||
{ |
|||
get { return Count < 3 ? double.NaN : Count*_m4/(_m2*_m2) - 3.0; } |
|||
}*/ |
|||
|
|||
/// <summary>
|
|||
/// Update the running statistics by adding another observed sample (in-place).
|
|||
/// </summary>
|
|||
public void Push(double value) |
|||
{ |
|||
if (Count < _windowSize) |
|||
{ |
|||
_oldValues[Count] = value; |
|||
Count++; |
|||
var d = value - _m1; |
|||
var s = d/Count; |
|||
// var s2 = s * s;
|
|||
var t = d*s*(Count - 1); |
|||
|
|||
_m1 += s; |
|||
// _m4 += t * s2 * (Count * Count - 3 * Count + 3) + 6 * s2 * _m2 - 4 * s * _m3;
|
|||
// _m3 += t * s * (Count - 2) - 3 * s * _m2;
|
|||
_m2 += t; |
|||
|
|||
if (value < _min || double.IsNaN(value)) |
|||
{ |
|||
_min = value; |
|||
} |
|||
|
|||
if (value > _max || double.IsNaN(value)) |
|||
{ |
|||
_max = value; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
var oldValue = _oldValues[_lastIndex]; |
|||
var d = value - oldValue; |
|||
var s = d/Count; |
|||
// var s2 = s * s;
|
|||
var oldM1 = _m1; |
|||
_m1 += s; |
|||
|
|||
var x = (value - _m1 + oldValue - oldM1); |
|||
var t = d*x; |
|||
_m2 += t; |
|||
|
|||
// _m4 += t * s2 * (Count * Count - 3 * Count + 3) + 6 * s2 * _m2 - 4 * s * _m3;
|
|||
// _m3 += t * (x /(Count-1) - 3 * s * _m2;
|
|||
|
|||
_oldValues[_lastIndex] = value; |
|||
_lastIndex++; |
|||
if (_lastIndex == WindowSize) |
|||
{ |
|||
_lastIndex = 0; |
|||
} |
|||
_max = value > _max || double.IsNaN(value) ? value : _oldValues.Maximum(); |
|||
_min = value < _min || double.IsNaN(value)? value : _oldValues.Minimum(); |
|||
} |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// Update the running statistics by adding a sequence of observed sample (in-place).
|
|||
/// </summary>
|
|||
public void PushRange(IEnumerable<double> values) |
|||
{ |
|||
foreach (var value in values) |
|||
{ |
|||
Push(value); |
|||
} |
|||
} |
|||
} |
|||
} |
|||
@ -0,0 +1,66 @@ |
|||
// <copyright file="MovingStatisticsTests.cs" company="Math.NET">
|
|||
// Math.NET Numerics, part of the Math.NET Project
|
|||
// http://numerics.mathdotnet.com
|
|||
// http://github.com/mathnet/mathnet-numerics
|
|||
// http://mathnetnumerics.codeplex.com
|
|||
//
|
|||
// Copyright (c) 2009-2015 Math.NET
|
|||
//
|
|||
// Permission is hereby granted, free of charge, to any person
|
|||
// obtaining a copy of this software and associated documentation
|
|||
// files (the "Software"), to deal in the Software without
|
|||
// restriction, including without limitation the rights to use,
|
|||
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|||
// copies of the Software, and to permit persons to whom the
|
|||
// Software is furnished to do so, subject to the following
|
|||
// conditions:
|
|||
//
|
|||
// The above copyright notice and this permission notice shall be
|
|||
// included in all copies or substantial portions of the Software.
|
|||
//
|
|||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|||
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|||
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|||
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|||
// OTHER DEALINGS IN THE SOFTWARE.
|
|||
// </copyright>
|
|||
|
|||
using System; |
|||
using System.Collections.Generic; |
|||
using System.Diagnostics; |
|||
using System.Runtime.InteropServices; |
|||
using MathNet.Numerics.Distributions; |
|||
using MathNet.Numerics.Random; |
|||
using MathNet.Numerics.Statistics; |
|||
using NUnit.Framework; |
|||
|
|||
namespace MathNet.Numerics.UnitTests.StatisticsTests |
|||
{ |
|||
#if !PORTABLE
|
|||
[TestFixture, Category("Statistics")] |
|||
public class MovingStatisticsTests |
|||
{ |
|||
[Test] |
|||
public void QuickTest() |
|||
{ |
|||
var data = new double[1000000]; |
|||
(new Normal(50, 10, new SystemRandomSource(0))).Samples(data); |
|||
var ms = new MovingStatistics(5, data); |
|||
ms.PushRange(new[] { 11.11, 22.22, 33.33, 44.44, 55.55 }); |
|||
Assert.AreEqual(5, ms.Count); |
|||
Assert.AreEqual(11.11, ms.Minimum); |
|||
Assert.AreEqual(55.55, ms.Maximum); |
|||
|
|||
Assert.AreEqual(33.33, ms.Mean, 1e-11); |
|||
Assert.AreEqual(308.58025, ms.Variance, 1e-10); |
|||
|
|||
//AssertHelpers.AlmostEqualRelative(stats0.Mean, ms.Mean, 14);
|
|||
//AssertHelpers.AlmostEqualRelative(stats0.Variance, ms.Variance, 14);
|
|||
//AssertHelpers.AlmostEqualRelative(stats0.StandardDeviation, ms.StandardDeviation, 14);
|
|||
} |
|||
} |
|||
#endif
|
|||
} |
|||
Loading…
Reference in new issue