diff --git a/src/Numerics/LtiSystems/TransferFunctionDiscrete.cs b/src/Numerics/LtiSystems/TransferFunctionDiscrete.cs
deleted file mode 100644
index c050eca8..00000000
--- a/src/Numerics/LtiSystems/TransferFunctionDiscrete.cs
+++ /dev/null
@@ -1,968 +0,0 @@
-using System;
-using System.Collections.Generic;
-using System.Linq;
-using System.Numerics;
-using System.Text;
-using MathNet.Numerics;
-
-namespace MathNet.Numerics.LtiSystems
-{
- /// Class for LTI discrete transfer functions
- public class TransferFunctionDiscrete
- {
-
- private double[] _num;
-
- private double[] _den;
-
- ///
- /// numberator (input dependent) Polynomial coefficients as array
- /// in order
- /// => index high ... index low
- /// => [n], [n-1], +..., [0]
- /// => 1 + q^-1 + ... + q^-n
- ///
- public double[] num
- {
- get
- {
- return _num;
- }
- set
- {
- _num = cutTrailingZeros(value);
- shiftNumDenIfPossible();
- }
- }
-
- /// den (state dependent) Polynomial coefficients as array
- /// in order
- /// => index high ... index low
- /// => [n], [n-1], +..., [0]
- /// => 1 + q^-1 + ... + q^-n
- ///
- public double[] den
- {
- get
- {
- return _den;
- }
- set
- {
- _den = cutTrailingZeros(value);
- shiftNumDenIfPossible();
- }
- }
-
-
-
- /// b (input dependent) Polynomial coefficients as array (
- public double[] b
- {
- get
- {
- return _num;
- }
- set
- {
- _num = cutTrailingZeros(value);
- shiftNumDenIfPossible();
- }
- }
-
- /// a (state dependent) Polynomial coefficients as array
- public double[] a
- {
- get
- {
- return _den;
- }
- set
- {
- _den = cutTrailingZeros(value);
- shiftNumDenIfPossible();
- }
- }
-
- /// Internal FIR States -> updated in every response calculation
- public double[] z_FIR { get; set; }
-
- /// Internal IIR States -> updated in every response calculation
- public double[] z_IIR { get; set; }
-
- /// any name you want to give this transfer function
- public string Name { get; set; }
-
- /// sampling time of discrete transfer function (default = 1)
- public double Ts { get; set; }
-
- /// variable for transfer function so far all tf's are in the q^-1 (or equivalently z^-1) form. Changing this will have NO nfluence besides displaying te TF
- public string variable = "q^-1";
-
-
-
- ///
- /// Check if this Transfer Function is stable
- ///
- /// the tolerance for euclidian distance at which a pole/zero pair is considered to be canceling each other
- /// false if system is unsable true if system is stable
- public bool IsStable(double numTolerance = 1e-8)
- {
-
- var p = GetPoles();
-
- var z = GetZeros();
- var z_isCompensated = new bool[z.Length];
- for (int j = 0; j < p.Length; j++)
- {
- // check if pole would lead to unstable behaviour
- if (p[j].Magnitude > 1.0)
- {
-
- // init some values
- double minDistance = Double.PositiveInfinity;
- int idxMinDistanceZero = -1;
-
- // analyze the distance between each zero and the pole now
- for (int i = 0; i < z.Length; i++)
- {
- // check if pole has already been used for compensation
- if (z_isCompensated[i])
- continue;
-
- // calculate geometrical distance between each zero and the pole now and store the closest neighbour
- var dist = (p[j] - z[i]).Magnitude;
- if (dist < minDistance)
- {
- minDistance = dist;
- idxMinDistanceZero = i;
- }
- }
-
- // if closest neighbour is too far away to compensate the unstable pole
- if (minDistance >= numTolerance)
- return false; // the system is unsable
- else
- z_isCompensated[idxMinDistanceZero] = true; // if not: mark the zero as already used for compensation
-
- }
-
- }
-
- return true;
-
- }
-
-
-
- /// constructor setting no properties at all
- public TransferFunctionDiscrete()
- {
- this.Ts = 1.0;
- }
-
- ///
- /// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
- ///
- public TransferFunctionDiscrete(double b_in, double[] a_in, double Ts_in = 1.0d)
- {
- if (a_in == null)
- throw new ArgumentNullException("a_in");
-
- this.a = (double[])a_in.Clone();
- this.b = new double[1];
- this.b[0] = b_in;
- this.z_IIR = new double[a_in.Length];
- this.z_FIR = new double[1];
- this.Ts = Ts_in;
- }
-
- ///
- /// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
- ///
- public TransferFunctionDiscrete(double[] b_in, double a_in, double Ts_in = 1.0d)
- {
- if (b_in == null)
- throw new ArgumentNullException("b_in");
-
- this.a = new double[1];
- this.a[0] = a_in;
- this.b = (double[])b_in.Clone();
- this.z_IIR = new double[1];
- this.z_FIR = new double[b_in.Length];
- this.Ts = Ts_in;
- }
-
- ///
- /// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
- ///
- public TransferFunctionDiscrete(double b_in, double a_in, double Ts_in = 1.0d)
- {
- this.a = new double[1];
- this.a[0] = a_in;
- this.b = new double[1];
- this.b[0] = b_in;
- this.z_IIR = new double[1];
- this.z_FIR = new double[1];
- this.Ts = Ts_in;
- }
-
- ///
- /// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
- ///
- public TransferFunctionDiscrete(double[] b_in, double[] a_in, double Ts_in = 1.0d)
- {
- if (b_in == null)
- throw new ArgumentNullException("b_in");
-
- if (a_in == null)
- throw new ArgumentNullException("a_in");
-
- this.a = (double[])a_in.Clone();
- this.b = (double[])b_in.Clone();
- this.z_IIR = new double[a_in.Length];
- this.z_FIR = new double[b_in.Length];
- this.Ts = Ts_in;
- }
-
-
- ///
- /// Adds delay to the numerator array (shifting the values by d steps)
- ///
- /// integer value of daly to add to this TF
- public void AddDelay(int d)
- {
- double[] b_new = new double[b.Length + d];
- b.CopyTo(b_new, d);
- b = b_new;
- }
-
- #region Helpers
- ///
- /// if num and den both start at a later step (e.G highest power num = q^-3 and highest power den = q^-4), the whole tf can be shifted by n (3) steps
- ///
- private void shiftNumDenIfPossible()
- {
- var offset = 0;
- if (_num == null || _den == null)
- return;
-
- var n = Math.Min(_num.Length, _den.Length);
- for (int i = 0; i < n; i++)
- {
- if (num[i] == 0.0d && _den[i] == 0.0d)
- offset = i + 1;
- else
- break;
- }
-
- if (offset > 0)
- {
- double[] tmp1 = new double[_num.Length - offset];
- Array.Copy(_num, offset, tmp1, 0, tmp1.Length);
- double[] tmp2 = new double[_den.Length - offset];
- Array.Copy(_den, offset, tmp2, 0, tmp2.Length);
- _num = tmp1;
- _den = tmp2;
- }
- }
-
- private double[] cutTrailingZeros(double[] vIn)
- {
- int lengthNew = vIn.Length;
-
- for (int i = vIn.Length - 1; i >= 0; i--)
- {
- if (vIn[i] != 0)
- {
- lengthNew = i + 1;
- break;
- }
- }
-
- var v = new double[lengthNew];
- Array.Copy(vIn, v, lengthNew);
-
- return v;
- }
-
- ///
- /// checks and adjusts internal states to a and b arrays
- ///
- private void checkStateSizes()
- {
- if (this.z_IIR == null)
- this.z_IIR = new double[this.a.Length];
-
- if (this.z_FIR == null)
- this.z_FIR = new double[this.b.Length];
-
- if (this.a.Length != this.z_IIR.Length)
- this.z_IIR = new double[this.a.Length];
-
- if (this.b.Length != this.z_FIR.Length)
- this.z_FIR = new double[this.b.Length];
-
- if (this.a.Length != this.z_IIR.Length)
- this.z_IIR = new double[this.a.Length];
- }
- #endregion Helpers
-
- #region Operators
-
- ///
- /// LTI System theory division of a transfer function object by a scalar
- ///
- /// transfer function
- /// scalar for divison
- /// new transfer function object divided by k
- public static TransferFunctionDiscrete operator /(TransferFunctionDiscrete G1, double k)
- {
- Polynomial A1 = new Polynomial(G1.a);
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(G1.b, (A1 * k).ToArray(), G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
- ///
- /// LTI System theory division of a scalar by a transfer function object
- ///
- /// scalar value
- /// transfer function for division
- /// new transfer function object
- public static TransferFunctionDiscrete operator /(double k, TransferFunctionDiscrete G1)
- {
- Polynomial A1 = new Polynomial(G1.a);
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete((A1 * k).ToArray(), G1.b, G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
- ///
- /// LTI System theory multiplication of a transfer function object by a scalar
- ///
- /// transfer function
- /// scalar for multiplication
- /// new transfer function object
- public static TransferFunctionDiscrete operator *(TransferFunctionDiscrete G1, double k)
- {
- Polynomial B1 = new Polynomial(G1.b);
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete((B1 * k).ToArray(), G1.a, G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
-
- }
-
- ///
- /// LTI System theory multiplication of a transfer function object by a scalar
- ///
- /// scalar for multiplication
- /// transfer function
- /// new transfer function object
- public static TransferFunctionDiscrete operator *(double k, TransferFunctionDiscrete G1)
- {
- Polynomial B1 = new Polynomial(G1.b);
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete((B1 * k).ToArray(), G1.a, G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
-
- ///
- /// LTI System theory substraction of a transfer function with a scalar
- ///
- /// transfer function
- /// scalar
- /// new transfer function object
- public static TransferFunctionDiscrete operator -(TransferFunctionDiscrete G1, double k)
- {
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A_res = (A1);
- Polynomial B_res = B1 - (A1 * k);
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
- ///
- /// LTI System theory substraction of a scalar by a transfer function
- ///
- /// scalar
- /// transfer function
- /// new transfer function object
- public static TransferFunctionDiscrete operator -(double k, TransferFunctionDiscrete G1)
- {
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A_res = (A1);
- Polynomial B_res = (A1 * k) - B1;
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
- ///
- /// LTI System theory addition of a transfer function with a scalar
- ///
- /// transfer function
- /// scalar
- /// new transfer function object
- public static TransferFunctionDiscrete operator +(TransferFunctionDiscrete G1, double k)
- {
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A_res = (A1);
- Polynomial B_res = (A1 * k) + B1;
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
- ///
- /// LTI System theory addition of a transfer function with a scalar
- ///
- /// transfer function
- /// scalar
- /// new transfer function object
- public static TransferFunctionDiscrete operator +(double k, TransferFunctionDiscrete G1)
- {
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A_res = (A1);
- Polynomial B_res = B1 + (A1 * k);
-
- TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts)
- {
- Name = G1.Name
- };
- return Gres;
- }
-
- ///
- /// LTI System theory addition of two transfer functions
- ///
- /// transfer function left
- /// transfer function right
- /// new transfer function object
- public static TransferFunctionDiscrete operator +(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2)
- {
- if (Math.Abs(G1.Ts - G2.Ts) > 1e-12)
- throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts));
-
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A2 = new Polynomial(G2.a);
- Polynomial B2 = new Polynomial(G2.b);
-
- Polynomial A_res = (A1 * A2);
- Polynomial B_res = (B1 * A2) + (B2 * A1);
-
- return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts);
- }
-
- ///
- /// LTI System theory substraction of two transfer functions
- ///
- /// transfer function left
- /// transfer function right
- /// new transfer function object
- public static TransferFunctionDiscrete operator -(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2)
- {
- if (Math.Abs(G1.Ts - G2.Ts) > 1e-12)
- throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts));
-
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A2 = new Polynomial(G2.a);
- Polynomial B2 = new Polynomial(G2.b);
-
- Polynomial A_res = (A1 * A2);
- Polynomial B_res = (B1 * A2) - (B2 * A1);
-
- return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts);
- }
-
- ///
- /// LTI System theory addition of two transfer functions
- ///
- /// transfer function left
- /// transfer function right
- /// new transfer function object
- public static TransferFunctionDiscrete operator *(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2)
- {
- if (Math.Abs(G1.Ts - G2.Ts) > 1e-12)
- throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts));
-
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A2 = new Polynomial(G2.a);
- Polynomial B2 = new Polynomial(G2.b);
-
- Polynomial A_res = A1 * A2;
- Polynomial B_res = B1 * B2;
-
- return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts);
- }
-
- ///
- /// LTI System theory division of two transfer functions
- ///
- /// transfer function left
- /// transfer function right
- /// new transfer function object
- public static TransferFunctionDiscrete operator /(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2)
- {
- if (Math.Abs(G1.Ts - G2.Ts) > 1e-12)
- throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts));
-
- Polynomial A1 = new Polynomial(G1.a);
- Polynomial B1 = new Polynomial(G1.b);
-
- Polynomial A2 = new Polynomial(G2.a);
- Polynomial B2 = new Polynomial(G2.b);
-
- Polynomial A_res = A1 * B2;
- Polynomial B_res = B1 * A2;
-
- return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts);
- }
- #endregion
-
- /// calculates y_k = G(q^-1) * x_k for a given x_k array
- public IEnumerable CalcResponse(IEnumerable x)
- {
- return this.CalcResponse(x.ToArray());
- }
-
- /// calculates y_k = G(q^-1) * x_k for a given x_k array
- public double[] CalcResponse(double[] x)
- {
- // this is basically a two step convolution and could be replaced by a
- // conv implementation.
- // however... this code works fine and replacing it would be more work
-
- double y_now = 0.0d;
- int idx_a = 0;
- int idx_b = 0;
- double[] y = new double[x.Length];
-
- this.checkStateSizes();
-
- // Loop all inputs
- for (int ii_x = 0; ii_x < x.Length; ii_x++)
- {
- y_now = 0.0d;
- idx_b = 0;
-
- // loop through b-matrix until end of momentary tempx-array
- for (int ii_b = 0; ii_b <= ii_x && idx_b < b.Length; ii_b++)
- {
-
- z_FIR[idx_b] = x[ii_x - ii_b];
- y_now += b[idx_b] * z_FIR[idx_b];
- idx_b++;
- }
-
-
- // start at second position, since it's the a-matrix
- idx_a = 1;
- // loop for a-matrix
- for (int ii_a = 0; ii_a <= (ii_x - 1) && idx_a < a.Length; ii_a++)
- {
- z_IIR[idx_a] = y[(ii_x - 1) - ii_a];
- y_now -= a[idx_a] * z_IIR[idx_a];
- idx_a++;
- }
- // write result
- y[ii_x] = (y_now / a[0]);
- z_IIR[0] = y[ii_x];
- }
- return (y);
- }
-
- // Todo: Implement FiltFilt
- /*
- ///
- /// A wrapper for the StaticFilters.FiltFilt method using the internal a and b arrays
- ///
- /// The data to filter
- /// initial state coefficients null for aotomatic generation via steady state solution
- /// the number of datapoints to pad at each side use less than 0 for Math.Max(a.Length, b.Length) * 3
- /// The filterd data
- ///
- /// In order to prevent transients at the end or start of the sequence we have to pad it
- /// The padding is done by rotating the sequence by 180° at the ends and append it to the data
- ///
- public double[] FiltFilt(double[] data, double[] zi = null, int padlen = 0)
- {
- if (this.a == null || this.a.Length == 0)
- throw new Exception("This transfer function has no a array with data");
- if (this.b == null || this.b.Length == 0)
- throw new Exception("This transfer function has no a array with data");
-
- return StaticFilters.FiltFilt(data, this.a, this.b, zi, padlen);
- }
- */
-
- #region Dynamics
-
- ///
- /// returns the impulse response with nSteps for the tf model
- ///
- /// number of steps for impulse response
- ///
- public double[] Impulse(int nSteps)
- {
-
- var Inp = new double[nSteps];
- Inp[0] = 1.0;
-
- var ImpulseResponse = this.CalcResponse(Inp);
- return (ImpulseResponse);
- }
-
- ///
- /// returns the impulse response with nSettling * 1.3 steps for the tf model
- ///
- public double[] Impulse()
- {
-
- var nSteps = Convert.ToInt32((double)CalcSettlingSteps() * 1.3);
- if (nSteps <= 0)
- return null;
- var Inp = new double[nSteps];
- Inp[0] = 1.0;
-
- var ImpulseResponse = this.CalcResponse(Inp);
- return (ImpulseResponse);
- }
-
-
- public Complex[] Bode(int nPoints = 100)
- {
- // substituting z = exp(j * omega * Ts)
- var omega_vec = Generate.LinearSpaced(nPoints, 0, 2 * Math.PI * 1 / Ts);
-
- return Bode(omega_vec);
- }
-
- public Complex[] Bode(int nPoints, out double[] omega_vec)
- {
- // substituting z = exp(j * omega * Ts)
- omega_vec = Generate.LinearSpaced(nPoints, 0, 2 * Math.PI * 1 / Ts);
-
-
- return Bode(omega_vec);
- }
-
- public Complex[] Bode(double[] omega_vec)
- {
-
- var nPoints = omega_vec.Length;
-
- double omega;
- double expVal;
- Complex zVal;
- Complex denVal;
- Complex numVal;
-
- var bodeVal = new Complex[nPoints];
-
- for (int idx = 0; idx < nPoints; idx++)
- {
-
-
- omega = omega_vec[idx];
-
- zVal = new Complex(0.0, 0.0);
-
- denVal = new Complex(0.0, 0.0);
- for (int ii = 0; ii < a.Length; ii++)
- {
- expVal = ii * omega * Ts;
- zVal = new Complex(0.0, expVal);
-
- denVal += a[ii] * zVal.Exp();
- }
-
- numVal = new Complex(0.0, 0.0);
- for (int ii = 0; ii < b.Length; ii++)
- {
- expVal = ii * omega * Ts;
- zVal = new Complex(0.0, expVal);
-
- numVal += b[ii] * zVal.Exp();
- }
- bodeVal[idx] = numVal / denVal;
- }
-
- return bodeVal;
- }
-
- /// The poles resulting from the denominator Polynomial root
- public Complex[] GetPoles()
- {
- Polynomial a_poly = new Polynomial(a, isFlip:true);
- Complex[] r = a_poly.GetRoots();
- return r;
- }
-
- /// The zeros resulting from the nominator Polynomial root
- public Complex[] GetZeros()
- {
- Polynomial b_poly = new Polynomial(b, isFlip:true);
- Complex[] r = b_poly.GetRoots();
- return r;
- }
-
-
- ///
- /// calculate the number of steps the system will need until it can be assumed to be settled
- ///
- /// tolerance in decimal percent at which to assume that the system is settled (default = 0.3)
- /// maximum number of steps to simulate (default = 500000)
- /// number of steps at which the system is assumed to be settled, or 0 if unstable
- public int CalcSettlingSteps(double tol = 0.03, int n_max = 500000)
- {
-
- // init settling time as zero for never settled
- int n_sttl = 0;
-
- // if the system is unstable return zero since the system will never be settled
- if (this.IsStable() == false)
- return 0;
-
- int n_sim = 0;
-
- double[] dampVals = GetDampings(out double[] EigenFrequencys);
-
- double dampWorst = dampVals.Min();
-
- //for (int ii = 1; ii < dampVals.Length; ii++)
- // dampWorst = dampWorst * dampVals[ii];
-
- double t_simFull;
-
- // appromate a settling time based on damping
- var t_stlDamp = -Math.Log(tol) / dampWorst;
-
- // approximate a settling time from time constants
- var tau = new double[dampVals.Length];
- for (int ii = 0; ii < tau.Length; ii++)
- tau[ii] = 1.0 / (dampVals[ii] * EigenFrequencys[ii]);
-
- // approx after 5 * biggest time constant
- var t_stlTimeConst = tau.Max() * 5;
-
- // choose bigger approximation
- t_simFull = Math.Max(t_stlTimeConst, t_stlDamp);
-
- // recalculate to number of steps
- int nStepsBase = (int)Math.Ceiling(t_simFull / Ts);
-
-
- // simulate impulse responses with n*10*nStepsBase time steps
- // incrementing n if necessary until steady state is reached
- n_sim = nStepsBase <= 0 ? 5 : nStepsBase;
- int count = 0;
- while (count < 10 && n_sttl == 0)
- {
- if (n_sim > n_max)
- return n_sttl;
-
- n_sim = 10 * n_sim;
-
- double[] dirac_sim = new double[n_sim];
- dirac_sim[0] = 1.0;
- var tmp_outp = this.CalcResponse(dirac_sim);
-
- int idxPos = n_sim - 1;
-
- // find first step beeing bigger than tolerance
- while (idxPos > 0 && n_sttl == 0)
- {
- if (tmp_outp[idxPos] > tol)
- n_sttl = idxPos;
-
- idxPos--;
- }
- count++;
- }
- return n_sttl;
-
- }
-
- #endregion Dynamics
-
-
- #region Dampings
- ///
- /// gets the damping coefficients from this transfer function,
- /// since all transfer functions so far are discrete time,
- /// these values do not directly translate to lambda.
- /// the theoretical recalculation is:
- /// Z = -cos(angle(log(lambda)))
- ///
- /// Array of damping values for this transfer function
- public double[] GetDampings()
- {
- return GetDampings(out double[] f);
- }
-
- ///
- /// gets the damping coefficients from this transfer function,
- /// since all transfer functions so far are discrete time,
- /// these values do not directly translate to lambda.
- /// the theoretical recalculation is:
- /// Z = -cos(angle(log(lambda)))
- ///
- /// Array of damping values for this transfer function
- public double[] GetDampings(out double[] wn)
- {
-
- var r = GetPoles().Clone() as Complex[];
- var s = new Complex[r.Length];
- var f = new double[r.Length];
- var z = new double[r.Length];
-
- for (int idx = 0; idx < r.Length; idx++)
- {
- s[idx] = Complex.Log(r[idx]) / Ts;
- f[idx] = s[idx].Magnitude;
- z[idx] = -s[idx].Real / f[idx];
- }
-
- wn = (double[])f.Clone();
-
- return z;
-
- }
-
-
- #endregion Dampings
-
-
- #region displaying
- ///
- ///
- ///
- ///
- public string DispTF()
- {
- return (DispTF(this.b, this.a, this.Name, this.variable.Substring(0, variable.Length - 1)));
- }
-
- public string NumString()
- {
- var varStr = this.variable.Substring(0, variable.Length - 1);
- var num = b.Clone() as double[];
- return getFractString(num, varStr);
- }
-
- public string DenString()
- {
- var varStr = this.variable.Substring(0, variable.Length - 1);
- var den = a.Clone() as double[];
- return getFractString(den, varStr);
- }
-
-
- private static string getFractString(double[] num, string varStr)
- {
- string str1;
- string str2;
- string strNum = "";
- for (int item = 0; item < num.Length; item++)
- {
- if (num[item] == 0)
- continue;
-
- //str2 = Math.Abs(num[item]).ToString();
- str2 = Math.Abs(num[item]).ToString("0.######");
- if (item == 0)
- {
- if (num[item] < 0)
- str1 = "-";
- else
- str1 = "";
-
- strNum = String.Concat(strNum, str1, str2);
- }
- else
- {
- if (num[item] > 0)
- str1 = " + ";
- else
- str1 = " - ";
- strNum = String.Concat(strNum, str1, str2, varStr, item.ToString());
- }
- }
-
- if (strNum.StartsWith("+") || strNum.StartsWith(" "))
- strNum = strNum.Substring(1);
-
- return strNum;
- }
-
-
-
- ///
- ///
- ///
- ///
- ///
- ///
- ///
- public static string DispTF(double[] num, double[] den, string name, string varStr = " q^-")
- {
-
- string strNum = getFractString(num, varStr);
- string strDen = getFractString(den, varStr);
- string strHead = "";
-
- if (String.IsNullOrEmpty(name))
- strHead = "TF = ";
- else
- strHead = name;
-
- int nbar = Math.Max(strDen.Length, strNum.Length);
-
- string strBar = new String('-', nbar);
- string strOut = String.Concat(strHead, "\n\n", strNum, '\n', strBar, '\n', strDen);
-
- return (strOut);
- }
-
- #endregion displaying
-
- }
-}