Browse Source

Add monotone spline to interpolation doc; update site menu to add links.

pull/749/head
Febin 5 years ago
parent
commit
ea01dbbd29
  1. 3
      docs/content/Interpolation.md
  2. 2
      src/Numerics/Interpolation/CubicSpline.cs

3
docs/content/Interpolation.md

@ -37,12 +37,13 @@ Interpolation on arbitrary sample points
----------------------------------------
* *Rational pole-free*: Barycentric Floater-Hormann Algorithm
* **Rational with poles**: Bulirsch & Stoer Algorithm
* *Rational with poles*: Bulirsch & Stoer Algorithm
* *Neville Polynomial*: Neville Algorithm. Note that the Neville algorithm performs very badly on equidistant points. If you need to interpolate a polynomial on equidistant points, we recommend to use the barycentric algorithm instead.
* *Linear Spline*
* *Cubic Spline* with boundary conditions
* *Natural Cubic Spline*
* *Akima Cubic Spline*
* *Monotone Cubic Spline*: Monotone-preserving piecewise cubic Hermite interpolating polynomial (PCHIP), based on Fritsch & Carlson (1980).
Interpolation with additional data

2
src/Numerics/Interpolation/CubicSpline.cs

@ -216,6 +216,8 @@ namespace MathNet.Numerics.Interpolation
/// </summary>
public static CubicSpline InterpolatePchipSorted(double[] x, double[] y)
{
// Implementation based on "Numerical Computing with Matlab" (Moler, 2004).
if (x.Length != y.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");

Loading…
Cancel
Save