diff --git a/.gitignore b/.gitignore
index 831886c2..e23fa5a9 100644
--- a/.gitignore
+++ b/.gitignore
@@ -24,6 +24,7 @@ coverage.*
*.vspx
*.lnt
*.svclog
+*.log
# Caches
_ReSharper*
diff --git a/MathNet.Numerics.All.sln.DotSettings b/MathNet.Numerics.All.sln.DotSettings
index a7749f26..742eedd0 100644
--- a/MathNet.Numerics.All.sln.DotSettings
+++ b/MathNet.Numerics.All.sln.DotSettings
@@ -23,9 +23,9 @@
False
<copyright file="$FILENAME$" company="Math.NET">
Math.NET Numerics, part of the Math.NET Project
-http://numerics.mathdotnet.com
-http://github.com/mathnet/mathnet-numerics
-http://mathnetnumerics.codeplex.com
+https://numerics.mathdotnet.com
+https://github.com/mathnet/mathnet-numerics
+https://mathnetnumerics.codeplex.com
Copyright (c) 2009-$CURRENT_YEAR$ Math.NET
@@ -74,4 +74,4 @@ OTHER DEALINGS IN THE SOFTWARE.
True
True
<data />
- <data><IncludeFilters /><ExcludeFilters /></data>
\ No newline at end of file
+ <data><IncludeFilters /><ExcludeFilters /></data>
diff --git a/MathNet.Numerics.Data.sln.DotSettings b/MathNet.Numerics.Data.sln.DotSettings
index d2773d8b..b5e5f590 100644
--- a/MathNet.Numerics.Data.sln.DotSettings
+++ b/MathNet.Numerics.Data.sln.DotSettings
@@ -24,9 +24,9 @@
False
<copyright file="$FILENAME$" company="Math.NET">
Math.NET Numerics, part of the Math.NET Project
-http://numerics.mathdotnet.com
-http://github.com/mathnet/mathnet-numerics
-http://mathnetnumerics.codeplex.com
+https://numerics.mathdotnet.com
+https://github.com/mathnet/mathnet-numerics
+https://mathnetnumerics.codeplex.com
Copyright (c) 2009-$CURRENT_YEAR$ Math.NET
@@ -81,4 +81,4 @@ OTHER DEALINGS IN THE SOFTWARE.
True
True
<data />
- <data><IncludeFilters /><ExcludeFilters /></data>
\ No newline at end of file
+ <data><IncludeFilters /><ExcludeFilters /></data>
diff --git a/MathNet.Numerics.Net35Only.sln.DotSettings b/MathNet.Numerics.Net35Only.sln.DotSettings
index 71ae4c46..8c949eb4 100644
--- a/MathNet.Numerics.Net35Only.sln.DotSettings
+++ b/MathNet.Numerics.Net35Only.sln.DotSettings
@@ -19,9 +19,9 @@
False
<copyright file="$FILENAME$" company="Math.NET">
Math.NET Numerics, part of the Math.NET Project
-http://numerics.mathdotnet.com
-http://github.com/mathnet/mathnet-numerics
-http://mathnetnumerics.codeplex.com
+https://numerics.mathdotnet.com
+https://github.com/mathnet/mathnet-numerics
+https://mathnetnumerics.codeplex.com
Copyright (c) 2009-$CURRENT_YEAR$ Math.NET
@@ -70,4 +70,4 @@ OTHER DEALINGS IN THE SOFTWARE.
True
True
<data />
- <data><IncludeFilters /><ExcludeFilters /></data>
\ No newline at end of file
+ <data><IncludeFilters /><ExcludeFilters /></data>
diff --git a/MathNet.Numerics.sln.DotSettings b/MathNet.Numerics.sln.DotSettings
index d4811bc7..8e5ab65e 100644
--- a/MathNet.Numerics.sln.DotSettings
+++ b/MathNet.Numerics.sln.DotSettings
@@ -48,9 +48,9 @@
False
<copyright file="$FILENAME$" company="Math.NET">
Math.NET Numerics, part of the Math.NET Project
-http://numerics.mathdotnet.com
-http://github.com/mathnet/mathnet-numerics
-http://mathnetnumerics.codeplex.com
+https://numerics.mathdotnet.com
+https://github.com/mathnet/mathnet-numerics
+https://mathnetnumerics.codeplex.com
Copyright (c) 2009-$CURRENT_YEAR$ Math.NET
@@ -107,4 +107,4 @@ OTHER DEALINGS IN THE SOFTWARE.
True
<data />
<data><IncludeFilters /><ExcludeFilters /></data>
-
\ No newline at end of file
+
diff --git a/README.md b/README.md
index 911f3d1d..cbc42c88 100644
--- a/README.md
+++ b/README.md
@@ -9,19 +9,19 @@ In addition to the core .NET package (which is written entirely in C#), Numerics
Math.NET Numerics is covered under the terms of the [MIT/X11](LICENSE.md) license. You may therefore link to it and use it in both opensource and proprietary software projects. We accept contributions!
-* [**Project Website**](http://numerics.mathdotnet.com)
-* [Source Code](http://github.com/mathnet/mathnet-numerics)
-* [NuGet & Binaries](http://numerics.mathdotnet.com/Packages.html) | [Release Notes](http://numerics.mathdotnet.com/ReleaseNotes.html)
-* [Documentation](http://numerics.mathdotnet.com) | [API Reference](http://numerics.mathdotnet.com/api/)
-* [Issues & Bugs](http://github.com/mathnet/mathnet-numerics/issues) | [Ideas](http://feedback.mathdotnet.com/forums/2060-math-net-numerics)
-* [Discussions](https://discuss.mathdotnet.com/c/numerics) | [Stack Overflow](http://stackoverflow.com/questions/tagged/mathdotnet) | [Twitter](http://twitter.com/MathDotNet)
-* [Wikipedia](http://en.wikipedia.org/wiki/Math.NET_Numerics) | [OpenHUB](https://www.ohloh.net/p/mathnet)
+* [**Project Website**](https://numerics.mathdotnet.com)
+* [Source Code](https://github.com/mathnet/mathnet-numerics)
+* [NuGet & Binaries](https://numerics.mathdotnet.com/Packages.html) | [Release Notes](https://numerics.mathdotnet.com/ReleaseNotes.html)
+* [Documentation](https://numerics.mathdotnet.com) | [API Reference](https://numerics.mathdotnet.com/api/)
+* [Issues & Bugs](https://github.com/mathnet/mathnet-numerics/issues) | [Ideas](http://feedback.mathdotnet.com/forums/2060-math-net-numerics)
+* [Discussions](https://discuss.mathdotnet.com/c/numerics) | [Stack Overflow](https://stackoverflow.com/questions/tagged/mathdotnet) | [Twitter](https://twitter.com/MathDotNet)
+* [Wikipedia](https://en.wikipedia.org/wiki/Math.NET_Numerics) | [OpenHUB](https://www.ohloh.net/p/mathnet)
### Current Version
- Math.NET Numerics
- MKL Native Provider
- OpenBLAS Native Provider
+ Math.NET Numerics
+ MKL Native Provider
+ OpenBLAS Native Provider
 Data Extensions
Installation Instructions
@@ -55,12 +55,12 @@ Supported Platforms:
- PCL Portable Profiles 7, 47, 78, 259 and 328: Windows 8, Silverlight 5, Windows Phone/SL 8, Windows Phone 8.1.
- Xamarin: Android, iOS
-For full details, dependencies and platform discrepancies see [Platform Compatibility](http://numerics.mathdotnet.com/Compatibility.html).
+For full details, dependencies and platform discrepancies see [Platform Compatibility](https://numerics.mathdotnet.com/Compatibility.html).
Building Math.NET Numerics
--------------------------
-Windows (.Net): [](https://ci.appveyor.com/project/cdrnet/mathnet-numerics)
+Windows (.Net): [](https://ci.appveyor.com/project/cdrnet/mathnet-numerics)
Linux (Mono): [](https://travis-ci.org/mathnet/mathnet-numerics)
You can build Math.NET Numerics with an IDE like VisualStudio or Xamarin,
@@ -77,5 +77,5 @@ FAKE:
./build.sh Build # build from Bash, with Mono on Linux/Mac or .Net on Windows
./build.sh Test # build and run unit tests
-See [Build & Tools](http://numerics.mathdotnet.com/Build.html) for full details
+See [Build & Tools](https://numerics.mathdotnet.com/Build.html) for full details
on how to build, generate documentation or even create a full release.
diff --git a/RELEASENOTES.md b/RELEASENOTES.md
index 31dc2463..2425ff4b 100644
--- a/RELEASENOTES.md
+++ b/RELEASENOTES.md
@@ -259,7 +259,7 @@
* Update Vagrant setup to official Ubuntu 14.04 LTS box and proper apt-style Mono+F# provisioning.
### 3.0.0-beta01 - 2014-04-01
-* See also: [Roadmap](http://sdrv.ms/17wPFlW) and [Towards Math.NET Numerics Version 3](http://christoph.ruegg.name/blog/towards-mathnet-numerics-v3.html).
+* See also: [Roadmap](https://sdrv.ms/17wPFlW) and [Towards Math.NET Numerics Version 3](http://christoph.ruegg.name/blog/towards-mathnet-numerics-v3.html).
* **Major release with breaking changes**
* All obsolete code has been removed
* Reworked redundancies, inconsistencies and unfortunate past design choices.
diff --git a/build.fsx b/build.fsx
index 268e8c03..eabf793b 100644
--- a/build.fsx
+++ b/build.fsx
@@ -5,7 +5,7 @@
// | | | | (_| | |_| | | |_| |\ | |____ | |
// |_| |_|\__,_|\__|_| |_(_)_| \_|______| |_|
//
-// Math.NET Numerics - http://numerics.mathdotnet.com
+// Math.NET Numerics - https://numerics.mathdotnet.com
// Copyright (c) Math.NET - Open Source MIT/X11 License
//
// FAKE build script, see http://fsharp.github.io/FAKE
diff --git a/build/MathNet.Numerics.Extension.nuspec b/build/MathNet.Numerics.Extension.nuspec
index eb0593ec..c651bd06 100644
--- a/build/MathNet.Numerics.Extension.nuspec
+++ b/build/MathNet.Numerics.Extension.nuspec
@@ -7,9 +7,9 @@
@summary@
@description@
@authors@
- http://numerics.mathdotnet.com/
- http://www.mathdotnet.com/images/MathNet128.png
- http://numerics.mathdotnet.com/License.html
+ https://numerics.mathdotnet.com/
+ https://www.mathdotnet.com/images/MathNet128.png
+ https://numerics.mathdotnet.com/License.html
false
@tags@
@releaseNotes@
diff --git a/build/MathNet.Numerics.nuspec b/build/MathNet.Numerics.nuspec
index 19c6d931..17f8c884 100644
--- a/build/MathNet.Numerics.nuspec
+++ b/build/MathNet.Numerics.nuspec
@@ -7,9 +7,9 @@
@summary@
@description@
@authors@
- http://numerics.mathdotnet.com/
- http://www.mathdotnet.com/images/MathNet128.png
- http://numerics.mathdotnet.com/License.html
+ https://numerics.mathdotnet.com/
+ https://www.mathdotnet.com/images/MathNet128.png
+ https://numerics.mathdotnet.com/License.html
false
@tags@
@releaseNotes@
diff --git a/docs/content/Build.md b/docs/content/Build.md
index b2b6f791..052511f5 100644
--- a/docs/content/Build.md
+++ b/docs/content/Build.md
@@ -40,18 +40,18 @@ is *not* required when using Visual Studio or `msbuild` directly.
build.cmd # normal build (.Net 4.0), run unit tests (.Net on Windows)
./build.sh # normal build (.Net 4.0), run unit tests (Mono on Linux/Mac, .Net on Windows)
-
+
build.cmd Build # normal build (.Net 4.0)
build.cmd Build incremental # normal build, incremental (.Net 4.0)
build.cmd Build all # full build (.Net 4.0, 3.5, PCL)
build.cmd Build net35 # compatibility build (.Net 3.5
build.cmd Build signed # normal build, signed/strong named (.Net 4.0)
-
+
build.cmd Test # normal build (.Net 4.0), run unit tests
build.cmd Test quick # normal build (.Net 4.0), run unit tests except long running ones
build.cmd Test all # full build (.Net 4.0, 3.5, PCL), run all unit tests
build.cmd Test net35 # compatibility build (.Net 3.5), run unit tests
-
+
build.cmd Clean # cleanup build artifacts
build.cmd Docs # generate documentation
build.cmd Api # generate api reference
@@ -64,7 +64,7 @@ is *not* required when using Visual Studio or `msbuild` directly.
If the build or tests fail claiming that FSharp.Core was not be found, see
[fsharp.org](http://fsharp.org/use/windows/) or install the
-[Visual F# 3.0 Tools](http://go.microsoft.com/fwlink/?LinkId=261286) directly.
+[Visual F# 3.0 Tools](https://go.microsoft.com/fwlink/?LinkId=261286) directly.
Dependencies
------------
@@ -126,10 +126,10 @@ Example:
// | |\/| |/ _` | __| '_ \ | . ` | __| | |
// | | | | (_| | |_| | | |_| |\ | |____ | |
// |_| |_|\__,_|\__|_| |_(_)_| \_|______| |_|
- //
- // Math.NET Numerics - http://numerics.mathdotnet.com
+ //
+ // Math.NET Numerics - https://numerics.mathdotnet.com
// Copyright (c) Math.NET - Open Source MIT/X11 License
- //
+ //
// Math.NET Numerics v3.5.0
// Math.NET Numerics MKL Provider v1.7.0
// Math.NET Numerics Data Extensions v3.1.0
@@ -172,9 +172,9 @@ Official Release Process (Maintainers only)
publishing to the NuGet gallery is quite unreliable.
* Create new GitHub release, attach Zip files (to be automated)
-* Copy artifacts to [release archive](http://1drv.ms/1lMtdNi) (to be automated)
+* Copy artifacts to [release archive](https://1drv.ms/1lMtdNi) (to be automated)
* Consider a tweet via [@MathDotNet](https://twitter.com/MathDotNet)
* Consider a post to the [Google+ site](https://plus.google.com/112484567926928665204)
* Update Wikipedia release version and date for the
- [Math.NET Numerics](http://en.wikipedia.org/wiki/Math.NET_Numerics) and
- [Comparison of numerical analysis software](http://en.wikipedia.org/wiki/Comparison_of_numerical_analysis_software) articles.
+ [Math.NET Numerics](https://en.wikipedia.org/wiki/Math.NET_Numerics) and
+ [Comparison of numerical analysis software](https://en.wikipedia.org/wiki/Comparison_of_numerical_analysis_software) articles.
diff --git a/docs/content/Compatibility.md b/docs/content/Compatibility.md
index b476e675..da57a585 100644
--- a/docs/content/Compatibility.md
+++ b/docs/content/Compatibility.md
@@ -34,8 +34,8 @@ Dependencies
Package Dependencies:
- .Net 4.0 and higher, Mono, PCL Profiles: None
-- .Net 3.5: [Task Parallel Library for .NET 3.5](http://www.nuget.org/packages/TaskParallelLibrary)
-- F# on .Net 4.0 an higher, Mono, PCL Profiles: additionally [FSharp.Core](http://www.nuget.org/packages/FSharp.Core)
+- .Net 3.5: [Task Parallel Library for .NET 3.5](https://www.nuget.org/packages/TaskParallelLibrary)
+- F# on .Net 4.0 an higher, Mono, PCL Profiles: additionally [FSharp.Core](https://www.nuget.org/packages/FSharp.Core)
Framework Dependencies (part of the .NET Framework):
diff --git a/docs/content/DescriptiveStatistics.md b/docs/content/DescriptiveStatistics.md
index 4ffe9d26..da9dab42 100644
--- a/docs/content/DescriptiveStatistics.md
+++ b/docs/content/DescriptiveStatistics.md
@@ -78,8 +78,8 @@ The *arithmetic mean* or *average* of the provided samples. In statistics, the s
a measure of the central tendency and estimates the expected value of the distribution.
The mean is affected by outliers, so if you need a more robust estimate consider to use the Median instead.
-`Statistics.Mean(data)`
-`StreamingStatistics.Mean(stream)`
+`Statistics.Mean(data)`
+`StreamingStatistics.Mean(stream)`
`ArrayStatistics.Mean(data)`
$$$
@@ -103,7 +103,7 @@ Variance $\sigma^2$ and the Standard Deviation $\sigma$ are measures of how far
If the whole population is available, the functions with the Population-prefix
will evaluate the respective measures with an $N$ normalizer for a population of size $N$.
-`Statistics.PopulationVariance(population)`
+`Statistics.PopulationVariance(population)`
`Statistics.PopulationStandardDeviation(population)`
$$$
@@ -113,7 +113,7 @@ On the other hand, if only a sample of the full population is available, the fun
without the Population-prefix will estimate unbiased population measures by applying
Bessel's correction with an $N-1$ normalizer to a sample set of size $N$.
-`Statistics.Variance(samples)`
+`Statistics.Variance(samples)`
`Statistics.StandardDeviation(samples)`
$$$
@@ -133,8 +133,8 @@ s^2 = \frac{1}{N-1}\sum_{i=1}^N (x_i - \overline{x})^2
Since mean and variance are often needed together, there are routines
that evaluate both in a single pass:
-`Statistics.MeanVariance(samples)`
-`ArrayStatistics.MeanVariance(samples)`
+`Statistics.MeanVariance(samples)`
+`ArrayStatistics.MeanVariance(samples)`
`StreamingStatistics.MeanVariance(samples)`
[lang=fsharp]
@@ -153,7 +153,7 @@ apply Bessel's correction to bias in case of sample data.
$$$
q = \frac{1}{N-1}\sum_{i=1}^N (x_i - \overline{x})(y_i - \overline{y})
-`Statistics.PopulationCovariance(population1, population2)`
+`Statistics.PopulationCovariance(population1, population2)`
$$$
q = \frac{1}{N}\sum_{i=1}^N (x_i - \mu_x)(y_i - \mu_y)
@@ -173,7 +173,7 @@ The k-th order statistic of a sample set is the k-th smallest value. Note that,
as an exception to most of Math.NET Numerics, the order k is one-based, meaning
the smallest value is the order statistic of order 1 (there is no order 0).
-`Statistics.OrderStatistic(data, order)`
+`Statistics.OrderStatistic(data, order)`
`SortedArrayStatistics.OrderStatistic(data, order)`
If the samples are sorted ascendingly, this is trivial and can be evaluated in constant time,
@@ -215,8 +215,8 @@ Median is a robust indicator of central tendency and much less affected by outli
than the sample mean. The median is estimated by the value exactly in the middle of
the sorted set of samples and thus separating the higher half of the data from the lower half.
-`Statistics.Median(data)`
-`SortedArrayStatistics.Median(data)`
+`Statistics.Median(data)`
+`SortedArrayStatistics.Median(data)`
`ArrayStatistics.MedianInplace(data)`
The median is only unique if the sample size is odd. This implementation internally
@@ -238,11 +238,11 @@ the middle number between the first two groups and the upper quartile by the mid
number between the remaining two groups. The middle number between the two middle groups
estimates the median as discussed above.
-`Statistics.LowerQuartile(data)`
-`Statistics.UpperQuartile(data)`
-`SortedArrayStatistics.LowerQuartile(data)`
-`SortedArrayStatistics.UpperQuartile(data)`
-`ArrayStatistics.LowerQuartileInplace(data)`
+`Statistics.LowerQuartile(data)`
+`Statistics.UpperQuartile(data)`
+`SortedArrayStatistics.LowerQuartile(data)`
+`SortedArrayStatistics.UpperQuartile(data)`
+`ArrayStatistics.LowerQuartileInplace(data)`
`ArrayStatistics.UpperQuartileInplace(data)`
[lang=fsharp]
@@ -255,8 +255,8 @@ Using that data we can provide a useful set of indicators usually named 5-number
which consists of the minimum value, the lower quartile, the median, the upper quartile and
the maximum value. All these values can be visualized in the popular box plot diagrams.
-`Statistics.FiveNumberSummary(data)`
-`SortedArrayStatistics.FiveNumberSummary(data)`
+`Statistics.FiveNumberSummary(data)`
+`SortedArrayStatistics.FiveNumberSummary(data)`
`ArrayStatistics.FiveNumberSummaryInplace(data)`
[lang=fsharp]
@@ -268,8 +268,8 @@ the maximum value. All these values can be visualized in the popular box plot di
The difference between the upper and the lower quartile is called inter-quartile range (IQR)
and is a robust indicator of spread. In box plots the IQR is the total height of the box.
-`Statistics.InterquartileRange(data)`
-`SortedArrayStatistics.InterquartileRange(data)`
+`Statistics.InterquartileRange(data)`
+`SortedArrayStatistics.InterquartileRange(data)`
`ArrayStatistics.InterquartileRangeInplace(data)`
Just like median, quartiles use the default R8 quantile definition internally.
@@ -285,9 +285,9 @@ equal groups and looking at the 101 places (0,1,..,100) between and around them.
The 0-percentile represents the minimum value, 25 the first quartile, 50 the median,
75 the upper quartile and 100 the maximum value.
-`Statistics.Percentile(data, p)`
-`Statistics.PercentileFunc(data)`
-`SortedArrayStatistics.Percentile(data, p)`
+`Statistics.Percentile(data, p)`
+`Statistics.PercentileFunc(data)`
+`SortedArrayStatistics.Percentile(data, p)`
`ArrayStatistics.PercentileInplace(data, p)`
Just like median, percentiles use the default R8 quantile definition internally.
@@ -305,9 +305,9 @@ of boxes and thus to arbitrary real numbers $\tau$ between 0.0 and 1.0, where 0.
minimum value, 0.5 the median and 1.0 the maximum value. Quantiles are closely related to
the inverse cumulative distribution function of the sample distribution.
-`Statistics.Quantile(data, tau)`
-`Statistics.QuantileFunc(data)`
-`SortedArrayStatistics.Quantile(data, tau)`
+`Statistics.Quantile(data, tau)`
+`Statistics.QuantileFunc(data)`
+`SortedArrayStatistics.Quantile(data, tau)`
`ArrayStatistics.QuantileInplace(data, tau)`
[lang=fsharp]
@@ -325,11 +325,11 @@ and SciPy have their own way to parametrize the behavior.
The `QuantileCustom` functions support all 9 modes from the R-project, which includes the one
used by Microsoft Excel, and also the 4-parameter variant of Mathematica:
-`Statistics.QuantileCustom(data, tau, definition)`
-`Statistics.QuantileCustomFunc(data, definition)`
-`SortedArrayStatistics.QuantileCustom(data, tau, a, b, c, d)`
-`SortedArrayStatistics.QuantileCustom(data, tau, definition)`
-`ArrayStatistics.QuantileCustomInplace(data, tau, a, b, c, d)`
+`Statistics.QuantileCustom(data, tau, definition)`
+`Statistics.QuantileCustomFunc(data, definition)`
+`SortedArrayStatistics.QuantileCustom(data, tau, a, b, c, d)`
+`SortedArrayStatistics.QuantileCustom(data, tau, definition)`
+`ArrayStatistics.QuantileCustomInplace(data, tau, a, b, c, d)`
`ArrayStatistics.QuantileCustomInplace(data, tau, definition)`
The `QuantileDefinition` enumeration has the following options:
@@ -366,8 +366,8 @@ Similar to `QuantileDefinition`, the `RankDefinition` enumeration controls how t
* **First**: Permutation with increasing values at each index of ties.
* **EmpiricalCDF**
-`Statistics.Ranks(data, definition)`
-`SortedArrayStatistics.Ranks(data, definition)`
+`Statistics.Ranks(data, definition)`
+`SortedArrayStatistics.Ranks(data, definition)`
`ArrayStatistics.RanksInplace(data, definition)`
[lang=fsharp]
@@ -384,8 +384,8 @@ Counterpart of the `Quantile` function, estimates $\tau$ of the provided $\tau$-
$x$ from the provided samples. The $\tau$-quantile is the data value where the cumulative distribution
function crosses $\tau$.
-`Statistics.QuantileRank(data, x, definition)`
-`Statistics.QuantileRankFunc(data, definition)`
+`Statistics.QuantileRank(data, x, definition)`
+`Statistics.QuantileRankFunc(data, definition)`
`SortedArrayStatistics.QuantileRank(data, x, definition)`
[lang=fsharp]
@@ -397,11 +397,11 @@ function crosses $\tau$.
Empirical Distribution Functions
--------------------------------
-`Statistics.EmpiricalCDF(data, x)`
-`Statistics.EmpiricalCDFFunc(data)`
-`Statistics.EmpiricalInvCDF(data, tau)`
-`Statistics.EmpiricalInvCDFFunc(data)`
-`SortedArrayStatistics.EmpiricalCDF(data, x)`
+`Statistics.EmpiricalCDF(data, x)`
+`Statistics.EmpiricalCDFFunc(data)`
+`Statistics.EmpiricalInvCDF(data, tau)`
+`Statistics.EmpiricalInvCDFFunc(data)`
+`SortedArrayStatistics.EmpiricalCDF(data, x)`
[lang=fsharp]
let ecdf = Statistics.EmpiricalCDFFunc whiteNoise
@@ -425,7 +425,7 @@ A histogram can be computed using the [Histogram][hist] class. Its constructor t
the samples enumerable, the number of buckets to create, plus optionally the range
(minimum, maximum) of the sample data if available.
- [hist]: http://numerics.mathdotnet.com/api/MathNet.Numerics.Statistics/Histogram.htm
+ [hist]: https://numerics.mathdotnet.com/api/MathNet.Numerics.Statistics/Histogram.htm
[lang=csharp]
var histogram = new Histogram(samples, 10);
diff --git a/docs/content/IFsharpNotebook.md b/docs/content/IFsharpNotebook.md
index 370b98b0..bcd6d2b4 100644
--- a/docs/content/IFsharpNotebook.md
+++ b/docs/content/IFsharpNotebook.md
@@ -9,7 +9,7 @@
IF# Notebook
============
-[iPython](http://ipython.org/) provides a rich browser-based interactive notebook with support for code, text, mathematical expressions,
+[iPython](https://ipython.org/) provides a rich browser-based interactive notebook with support for code, text, mathematical expressions,
inline plots and other rich media. [IfSharp](https://github.com/BayardRock/IfSharp), developed by Bayard Rock, is an F# profile
for iPython with IntelliSense and embedded FSharp.Charting. Thanks to its NuGet support it can load other packages like Math.NET Numerics on demand.
@@ -23,10 +23,10 @@ Follow the instructions at [IfSharp/Installation](http://bayardrock.github.io/If
Essentially:
-1. Install [Anaconda](http://continuum.io/downloads)
+1. Install [Anaconda](https://continuum.io/downloads)
2. In a shell, run
- conda update conda
+ conda update conda
conda update ipython
3. Install [IfSharp](https://github.com/BayardRock/IfSharp/releases).
diff --git a/docs/content/IntegralTransforms.md b/docs/content/IntegralTransforms.md
index f9282a0e..0cddad7a 100644
--- a/docs/content/IntegralTransforms.md
+++ b/docs/content/IntegralTransforms.md
@@ -22,16 +22,16 @@ is to be used can be specified by an additional _options_ parameter.
Fourier Space: Discrete Fourier Transform and FFT
-------------------------------------------------
-Wikipedia has an extensive [article on the discrete Fourier transform (DFT)](http://en.wikipedia.org/wiki/Discrete_Fourier_transform).
+Wikipedia has an extensive [article on the discrete Fourier transform (DFT)](https://en.wikipedia.org/wiki/Discrete_Fourier_transform).
We provide implementations of the following algorithms:
-* *Naive Discrete Fourier Transform (DFT):* Out-place transform for arbitrary vector lengths. Mainly intended for verifying faster algorithms: _[NaiveForward](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms.Algorithms/DiscreteFourierTransform.htm#NaiveForward)_, _[NaiveInverse](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms.Algorithms/DiscreteFourierTransform.htm#NaiveInverse)_
+* *Naive Discrete Fourier Transform (DFT):* Out-place transform for arbitrary vector lengths. Mainly intended for verifying faster algorithms: _[NaiveForward](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm#NaiveForward)_, _[NaiveInverse](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm#NaiveInverse)_
-* *Radix-2 Fast Fourier Transform (FFT):* In-place fast Fourier transform for vectors with a power-of-two length (Radix-2): _[Radix2Forward](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms.Algorithms/DiscreteFourierTransform.htm#Radix2Forward)_, _[url:Radix2Inverse](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms.Algorithms/DiscreteFourierTransform.htm#Radix2Inverse)_
+* *Radix-2 Fast Fourier Transform (FFT):* In-place fast Fourier transform for vectors with a power-of-two length (Radix-2): _[Radix2Forward](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm#Radix2Forward)_, _[url:Radix2Inverse](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm#Radix2Inverse)_
-* *Bluestein Fast Fourier Transform (FFT):* In-place fast Fourier transform for arbitrary vector lengths: _[BluesteinForward](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms.Algorithms/DiscreteFourierTransform.htm#BluesteinForward)_, _[url:BluesteinInverse](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms.Algorithms/DiscreteFourierTransform.htm#BluesteinInverse)_
+* *Bluestein Fast Fourier Transform (FFT):* In-place fast Fourier transform for arbitrary vector lengths: _[BluesteinForward](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm#BluesteinForward)_, _[url:BluesteinInverse](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm#BluesteinInverse)_
-Furthermore, the _[Transform](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms/Transform.htm)_ class provides a shortcut for the Bluestein FFT using static methods which are even easier to use: _[FourierForward](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms/Transform.htm#FourierForward)_, _[FourierInverse](http://api.mathdotnet.com/Numerics/MathNet.Numerics.IntegralTransforms/Transform.htm#FourierInverse)_.
+Furthermore, the _[Transform](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Fourier.htm)_ class provides a shortcut for the Bluestein FFT using static methods which are even easier to use: _[FourierForward](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Transform.htm#FourierForward)_, _[FourierInverse](https://numerics.mathdotnet.com/api/MathNet.Numerics.IntegralTransforms/Transform.htm#FourierInverse)_.
Code Sample using the Transform class:
@@ -47,10 +47,10 @@ Code Sample using the Transform class:
Fourier Options:
* *Default:* Uses a negative exponent sign in forward transformations, and symmetric scaling (that is, sqrt(1/N) for both forward and inverse transformation). This is the convention used in Maple and is widely accepted in the educational sector (due to the symmetry).
-* *AsymmetricScaling:* Set this flag to suppress scaling on the forward transformation but scale the inverse transform with 1/N.
+* *AsymmetricScaling:* Set this flag to suppress scaling on the forward transformation but scale the inverse transform with 1/N.
* *NoScaling:* Set this flag to suppress scaling for both forward and inverse transformation. Note that in this case if you apply first the forward and then inverse transformation you won't get back the original signal (by factor N/2).
* *InverseExponent:* Uses the positive instead of the negative sign in the forward exponent, and the negative (instead of positive) exponent in the inverse transformation.
-* *Matlab:* Use this flag if you need MATLAB compatibility. Equals to setting the _AsymmetricScaling_ flag. This matches the definition used in the [url:wikipedia article|http://en.wikipedia.org/wiki/Discrete_Fourier_transform].
+* *Matlab:* Use this flag if you need MATLAB compatibility. Equals to setting the _AsymmetricScaling_ flag. This matches the definition used in the [url:wikipedia article|https://en.wikipedia.org/wiki/Discrete_Fourier_transform].
* *NumericalRecipes:* Use this flag if you need Numerical Recipes compatibility. Equal to setting both the _InverseExponent_ and the _NoScaling_ flags.
Useful symmetries of the Fourier transform:
diff --git a/docs/content/MKL.md b/docs/content/MKL.md
index 282ae17e..80b9a5d6 100644
--- a/docs/content/MKL.md
+++ b/docs/content/MKL.md
@@ -3,7 +3,7 @@ Intel Math Kernel Library (MKL)
Math.NET Numerics is designed such that performance-sensitive algorithms
can be swapped with alternative implementations by the concept of providers.
-There is currently only a provider for [linear algebra related routines](http://numerics.mathdotnet.com/api/MathNet.Numerics.Providers.LinearAlgebra.Mkl/MklLinearAlgebraProvider.htm), but there
+There is currently only a provider for [linear algebra related routines](https://numerics.mathdotnet.com/api/MathNet.Numerics.Providers.LinearAlgebra.Mkl/MklLinearAlgebraProvider.htm), but there
are plans to add additional more e.g. related to nonlinear optimization problems or signal processing.
Providers become interesting when they can leverage a platform-native high performance library
@@ -47,7 +47,7 @@ We use P/Invoke to talk to the binaries, but for this to work they must
have already been loaded or the platform service needs to be able to find and
load them on its own.
-In order to make providers easier to use, since v3.6.0 Math.NET Numerics
+In order to make providers easier to use, since v3.6.0 Math.NET Numerics
first tries to load native providers from a set of known directories before
falling back to the platform's default behavior. In each of these directories
it first looks for a processor-architecture specific folder within the directory,
@@ -150,7 +150,7 @@ MKL provider automatically.
[lang=fsharp]
open System.IO
open MathNet.Numerics
-
+
Control.NativeProviderPath <- Path.Combine(__SOURCE_DIRECTORY__,"../")
Control.UseNativeMKL()
diff --git a/docs/content/MatrixMarket.md b/docs/content/MatrixMarket.md
index 26779268..193fc3cd 100644
--- a/docs/content/MatrixMarket.md
+++ b/docs/content/MatrixMarket.md
@@ -4,7 +4,7 @@ NIST MatrixMarket Text Files
MatrixMarket is both a [vast repository of test data](http://math.nist.gov/MatrixMarket/)
and a text-based [exchange file format](http://math.nist.gov/MatrixMarket/formats.html) provided by NIST.
Being text-based makes it convenient to deal with and program against, and also works well with versioning
-tools like [Git](http://www.git-scm.com/). But other than [CSV](CSV.html) it can also store sparse matrices in a compact way.
+tools like [Git](https://www.git-scm.com/). But other than [CSV](CSV.html) it can also store sparse matrices in a compact way.
Math.NET Numerics provides basic support for MatrixMarket files with the **MathNet.Numerics.Data.Text** package,
which is available on NuGet as separate package and not included in the basic distribution.
diff --git a/docs/content/Packages.md b/docs/content/Packages.md
index 66a9b615..1a679db6 100644
--- a/docs/content/Packages.md
+++ b/docs/content/Packages.md
@@ -4,7 +4,7 @@ NuGet Packages & Binaries
The recommended way to get Math.NET Numerics is NuGet. The following packages are
provided and maintained in the public [NuGet Gallery](https://nuget.org/profiles/mathnet/).
The complete set of Zip and NuGet packages including symbol packages is also available in the
-[release archive](http://1drv.ms/1NlUeDT).
+[release archive](https://1drv.ms/1NlUeDT).
*We're currently planning what platforms we should support in the future.
Consider to [vote for the platforms you need to be supported](https://discuss.mathdotnet.com/t/poll-what-platforms-should-math-net-numerics-support/60),
diff --git a/docs/content/Regression.md b/docs/content/Regression.md
index 8af543f2..75e679cc 100644
--- a/docs/content/Regression.md
+++ b/docs/content/Regression.md
@@ -107,7 +107,7 @@ To fit to a polynomial we can choose the following linear model with $f_i(x) :=
$$$
y : x \mapsto p_0 + p_1 x + p_2 x^2 + \cdots + p_N x^N
-The predictor matrix of this model is the [Vandermonde matrix](http://en.wikipedia.org/wiki/Vandermonde_matrix).
+The predictor matrix of this model is the [Vandermonde matrix](https://en.wikipedia.org/wiki/Vandermonde_matrix).
There is a special function in the `Fit` class for regressions to a polynomial,
but note that regression to high order polynomials is numerically problematic.
@@ -254,7 +254,7 @@ are dependent on the point of interest $t$.
// warning: preliminary api
var p = WeightedRegression.Local(X,y,t,radius,kernel);
-
+
Regularization
--------------
diff --git a/docs/content/Users.md b/docs/content/Users.md
index 15a2ccbc..30f24779 100644
--- a/docs/content/Users.md
+++ b/docs/content/Users.md
@@ -33,7 +33,7 @@ Open Source
* [Maintenance Game](https://github.com/KaptenJon/MaintenanceGame)
* [Monica](https://github.com/zhuazhua/Monica)
* [Math.Net PowerShell](http://mathnetpowershell.codeplex.com/) (unaffiliated)
-* [Math.NET Symbolics](http://symbolics.mathdotnet.com) and other [Math.NET](http://www.mathdotnet.com) projects.
+* [Math.NET Symbolics](https://symbolics.mathdotnet.com) and other [Math.NET](https://www.mathdotnet.com) projects.
Closed Source
-------------
diff --git a/docs/content/index.md b/docs/content/index.md
index 77e228e1..245bb662 100644
--- a/docs/content/index.md
+++ b/docs/content/index.md
@@ -6,7 +6,7 @@ in science, engineering and every day use. Covered topics include special functi
linear algebra, probability models, random numbers, interpolation, integration,
regression, optimization problems and more.
-Math.NET Numerics is part of the [Math.NET initiative](http://www.mathdotnet.com/)
+Math.NET Numerics is part of the [Math.NET initiative](https://www.mathdotnet.com/)
and is the result of merging dnAnalytics with Math.NET Iridium, replacing both.
Available for free under the [MIT/X11 License](License.html).
It targets Microsoft .Net 4, .Net 3.5 and Mono
@@ -120,7 +120,7 @@ If you don't have NuGet yet:
[lang=sh]
sudo mozroots --import --sync
- curl -L http://nuget.org/nuget.exe -o nuget.exe
+ curl -L https://nuget.org/nuget.exe -o nuget.exe
Then you can use NuGet to fetch the latest binaries in your working directory.
The `-Pre` argument causes it to include pre-releases, omit it if you want stable releases only.
diff --git a/docs/tools/build-docs.fsx b/docs/tools/build-docs.fsx
index 63f6b2cf..3ff7205e 100644
--- a/docs/tools/build-docs.fsx
+++ b/docs/tools/build-docs.fsx
@@ -6,8 +6,8 @@
// Binaries that have XML documentation (in a corresponding generated XML file)
let referenceBinaries = [ "MathNet.Numerics.dll"; "MathNet.Numerics.FSharp.dll" ]
// Web site location for the generated documentation
-let website = "http://numerics.mathdotnet.com"
-let githubLink = "http://github.com/mathnet/mathnet-numerics"
+let website = "https://numerics.mathdotnet.com"
+let githubLink = "https://github.com/mathnet/mathnet-numerics"
// Specify more information about your project
let info =
@@ -15,7 +15,7 @@ let info =
"project-author", "Christoph Ruegg, Marcus Cuda, Jurgen Van Gael"
"project-summary", "Math.NET Numerics, providing methods and algorithms for numerical computations in science, engineering and every day use. .Net 4, .Net 3.5, SL5, Win8, WP8, PCL 47 and 136, Mono, Xamarin Android/iOS."
"project-github", githubLink
- "project-nuget", "http://nuget.com/packages/MathNet.Numerics" ]
+ "project-nuget", "https://nuget.com/packages/MathNet.Numerics" ]
// --------------------------------------------------------------------------------------
// For typical project, no changes are needed below
diff --git a/docs/tools/templates/template.cshtml b/docs/tools/templates/template.cshtml
index 274ae9db..010802a2 100644
--- a/docs/tools/templates/template.cshtml
+++ b/docs/tools/templates/template.cshtml
@@ -40,14 +40,14 @@
-
+