// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Globalization; using MathNet.Numerics.LinearAlgebra.Double; namespace Examples.LinearAlgebraExamples { /// /// Matrix transpose and inverse /// /// Transpose /// Inverse public class MatrixTransposeAndInverse : IExample { /// /// Gets the name of this example /// public string Name { get { return "Matrix transpose and inverse"; } } /// /// Gets the description of this example /// public string Description { get { return "Transpose matrix, inverse matrix, transpose-and-multiply matrix examples"; } } /// /// Run example /// /// Transpose /// Invertible matrix public void Run() { // Format matrix output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Create random square matrix var matrix = new DenseMatrix(5); var rnd = new Random(1); for (var i = 0; i < matrix.RowCount; i++) { for (var j = 0; j < matrix.ColumnCount; j++) { matrix[i, j] = rnd.NextDouble(); } } Console.WriteLine(@"Initial matrix"); Console.WriteLine(matrix.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 1. Get matrix inverse var inverse = matrix.Inverse(); Console.WriteLine(@"1. Matrix inverse"); Console.WriteLine(inverse.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 2. Matrix multiplied by its inverse gives identity matrix var identity = matrix * inverse; Console.WriteLine(@"2. Matrix multiplied by its inverse"); Console.WriteLine(identity.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 3. Get matrix transpose var transpose = matrix.Transpose(); Console.WriteLine(@"3. Matrix transpose"); Console.WriteLine(transpose.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 4. Get orthogonal matrix, i.e. do QR decomposition and get matrix Q var orthogonal = matrix.QR().Q; Console.WriteLine(@"4. Orthogonal matrix"); Console.WriteLine(orthogonal.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 5. Transpose and multiply orthogonal matrix by iteslf gives identity matrix identity = orthogonal.TransposeAndMultiply(orthogonal); Console.WriteLine(@"Transpose and multiply orthogonal matrix by iteslf"); Console.WriteLine(identity.ToString("#0.00\t", formatProvider)); Console.WriteLine(); } } }