[hide] #I "../../out/lib/net40" #r "MathNet.Numerics.dll" #r "MathNet.Numerics.FSharp.dll" open System.Numerics open MathNet.Numerics open MathNet.Numerics.LinearAlgebra Linear Equation Systems ======================= A system of linear equations is a collection of linear equations involving the same set of variables: $$$ \begin{alignat}{7} 3x &\; + \;& 2y &\; - \;& z &\; = \;& 1 & \\ 2x &\; - \;& 2y &\; + \;& 4z &\; = \;& -2 & \\ -x &\; + \;& \tfrac{1}{2} y &\; - \;& z &\; = \;& 0 & \end{alignat} More generally, we can write $$$ \begin{alignat}{7} a_{11} x_1 &&\; + \;&& a_{12} x_2 &&\; + \cdots + \;&& a_{1n} x_n &&\; = \;&&& b_1 \\ a_{21} x_1 &&\; + \;&& a_{22} x_2 &&\; + \cdots + \;&& a_{2n} x_n &&\; = \;&&& b_2 \\ \vdots\;\;\; && && \vdots\;\;\; && && \vdots\;\;\; && &&& \;\vdots \\ a_{m1} x_1 &&\; + \;&& a_{m2} x_2 &&\; + \cdots + \;&& a_{mn} x_n &&\; = \;&&& b_m \\ \end{alignat} where we all parameters $a_{ij}$ and $b_i$ are known and we would like to find $x_j$ that satisfy all these equations. If we have the same number $n$ of unknown variables $x_j$ as number of equations $m$, and all these equations are independent, then there is a unique solution. This is a fundamental problem in the domain of linear algebra, and we can use its power to find the solution. Accordingly we can write the equivalent problem with matrices and vectors: $$$ \mathbf{A}= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},\quad \mathbf{x}=\begin{bmatrix}x_1\\x_2\\ \vdots \\x_n\end{bmatrix},\quad \mathbf{b}=\begin{bmatrix}b_1\\b_2\\ \vdots \\b_m\end{bmatrix} such that $$$ \mathbf{A}\mathbf{x}=\mathbf{b} The initial example system would then look like this: $$$ \begin{bmatrix}3 & 2 & -1 \\2 & -2 & 4 \\-1 & \tfrac{1}{2} & -1\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix} \;=\; \begin{bmatrix}1\\-2\\0\end{bmatrix} Which we can solve explicitly with the LU-decomposition, or simply by using the Solve method: [lang=csharp] var A = Matrix.Build.DenseOfArray(new double[,] { { 3, 2, -1 }, { 2, -2, 4 }, { -1, 0.5, -1 } }); var b = Vector.Build.Dense(new double[] { 1, -2, 0 }); var x = A.Solve(b); The resulting $\mathbf{x}$ is $[1,\;-2,\;-2]$, hence the solution $x=1,\;y=-2,\;z=-2$. In F# the syntax is a bit lighter: [lang=fsharp] let A = matrix [[ 3.0; 2.0; -1.0 ] [ 2.0; -2.0; 4.0 ] [ -1.0; 0.5; -1.0 ]] let b = vector [ 1.0; -2.0; 0.0 ] let x = A.Solve(b) // 1;-2;-2 Normalizing Equation Systems ---------------------------- In practice, a linear equation system to be solved is often not in the standard form required to use the linear algebra approach. For example, let's have a look at the following system: $$$ \begin{bmatrix}1 & 2 & 3 & 4\\2 & 3 & 4 & 5\\3 & 4 & 5 & 6\\4 & 5 & 6 & 7\end{bmatrix} \begin{bmatrix}0\\0\\V\\T\end{bmatrix} \;=\; \begin{bmatrix}F\\M\\20\\0\end{bmatrix} The first two values of the solution vector $[0,\;0,\;V,\;T]$ are constant zero, so we can simplify the system to: $$$ \begin{bmatrix}3 & 4\\4 & 5\\5 & 6\\6 & 7\end{bmatrix} \begin{bmatrix}V\\T\end{bmatrix} \;=\; \begin{bmatrix}F\\M\\20\\0\end{bmatrix} Then we need to subtract the two unknowns from the right side back from the left (so that they become zero on the right side), by introducing a new column each. First we subtract $[F,\;0,\;0,\;0]^T$ from both sides: $$$ \begin{bmatrix}3 & 4 & -1\\4 & 5 & 0\\5 & 6 & 0\\6 & 7 & 0\end{bmatrix} \begin{bmatrix}V\\T\\F\end{bmatrix} \;=\; \begin{bmatrix}0\\M\\20\\0\end{bmatrix} Then we subtract $[0,\;M,\;0,\;0]^T$ from both sides the same way: $$$ \begin{bmatrix}3 & 4 & -1 & 0\\4 & 5 & 0 & -1\\5 & 6 & 0 & 0\\6 & 7 & 0 & 0\end{bmatrix} \begin{bmatrix}V\\T\\F\\M\end{bmatrix} \;=\; \begin{bmatrix}0\\0\\20\\0\end{bmatrix} Which is in standard from, so we can solve normally: [lang=fsharp] let A' = matrix [[ 3.0; 4.0; -1.0; 0.0 ] [ 4.0; 5.0; 0.0; -1.0 ] [ 5.0; 6.0; 0.0; 0.0; ] [ 6.0; 7.0; 0.0; 0.0 ]] let b' = vector [ 0.0; 0.0; 20.0; 0.0 ] let x' = A'.Solve(b') // -140; 120; 60; 40