// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using MathNet.Numerics; using MathNet.Numerics.Interpolation; using MathNet.Numerics.Random; namespace Examples.InterpolationExamples { /// /// Interpolation example /// /// public class AkimaSpline : IExample { /// /// Gets the name of this example /// public string Name { get { return "Interpolation - Akima Spline"; } } /// /// Gets the description of this example /// public string Description { get { return "Akima Spline Interpolation Algorithm"; } } /// /// Run example /// /// Spline interpolation public void Run() { // 1. Generate 10 samples of the function x*x-2*x on interval [0, 10] Console.WriteLine(@"1. Generate 10 samples of the function x*x-2*x on interval [0, 10]"); double[] points = Generate.LinearSpaced(10, 0, 10); var values = Generate.Map(points, TargetFunction); Console.WriteLine(); // 2. Create akima spline interpolation var method = CubicSpline.InterpolateAkima(points, values); Console.WriteLine(@"2. Create akima spline interpolation based on arbitrary points"); Console.WriteLine(); // 3. Check if interpolation support integration Console.WriteLine(@"3. Support integration = {0}", ((IInterpolation)method).SupportsIntegration); Console.WriteLine(); // 4. Check if interpolation support differentiation Console.WriteLine(@"4. Support differentiation = {0}", ((IInterpolation)method).SupportsDifferentiation); Console.WriteLine(); // 5. Differentiate at point 5.2 Console.WriteLine(@"5. Differentiate at point 5.2 = {0}", method.Differentiate(5.2)); Console.WriteLine(); // 6. Integrate at point 5.2 Console.WriteLine(@"6. Integrate at point 5.2 = {0}", method.Integrate(5.2)); Console.WriteLine(); // 7. Interpolate ten random points and compare to function results Console.WriteLine(@"7. Interpolate ten random points and compare to function results"); var rng = new MersenneTwister(1); for (var i = 0; i < 10; i++) { // Generate random value from [0, 10] var point = rng.NextDouble() * 10; Console.WriteLine(@"Interpolate at {0} = {1}. Function({0}) = {2}", point.ToString("N05"), method.Interpolate(point).ToString("N05"), TargetFunction(point).ToString("N05")); } Console.WriteLine(); } /// /// Test Function: f(x) = x * x - 2 * x /// /// X parameter value /// Calculation result public static double TargetFunction(double x) { return (x * x) - (2 * x); } } }