// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Globalization; using MathNet.Numerics.LinearAlgebra.Double; namespace Examples.LinearAlgebraExamples { /// /// Direct solvers (using matrix decompositions) /// /// public class DirectSolvers : IExample { /// /// Gets the name of this example /// public string Name { get { return "Direct solvers"; } } /// /// Gets the description of this example /// public string Description { get { return "Solve linear equations using matrix decompositions"; } } /// /// Run example /// public void Run() { // Format matrix output to console var formatProvider = (CultureInfo) CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients var matrixA = DenseMatrix.OfArray(new[,] {{5.00, 2.00, -4.00}, {3.00, -7.00, 6.00}, {4.00, 1.00, 5.00}}); Console.WriteLine(@"Matrix 'A' with coefficients"); Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Create vector "b" with the constant terms. var vectorB = new DenseVector(new[] {-7.0, 38.0, 43.0}); Console.WriteLine(@"Vector 'b' with the constant terms"); Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 1. Solve linear equations using LU decomposition var resultX = matrixA.LU().Solve(vectorB); Console.WriteLine(@"1. Solution using LU decomposition"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 2. Solve linear equations using QR decomposition resultX = matrixA.QR().Solve(vectorB); Console.WriteLine(@"2. Solution using QR decomposition"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 3. Solve linear equations using SVD decomposition matrixA.Svd().Solve(vectorB, resultX); Console.WriteLine(@"3. Solution using SVD decomposition"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 4. Solve linear equations using Gram-Shmidt decomposition matrixA.GramSchmidt().Solve(vectorB, resultX); Console.WriteLine(@"4. Solution using Gram-Shmidt decomposition"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 5. Verify result. Multiply coefficient matrix "A" by result vector "x" var reconstructVecorB = matrixA*resultX; Console.WriteLine(@"5. Multiply coefficient matrix 'A' by result vector 'x'"); Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // To use Cholesky or Eigenvalue decomposition coefficient matrix must be // symmetric (for Evd and Cholesky) and positive definite (for Cholesky) // Multipy matrix "A" by its transpose - the result will be symmetric and positive definite matrix var newMatrixA = matrixA.TransposeAndMultiply(matrixA); Console.WriteLine(@"Symmetric positive definite matrix"); Console.WriteLine(newMatrixA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 6. Solve linear equations using Cholesky decomposition newMatrixA.Cholesky().Solve(vectorB, resultX); Console.WriteLine(@"6. Solution using Cholesky decomposition"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 7. Solve linear equations using eigen value decomposition newMatrixA.Evd().Solve(vectorB, resultX); Console.WriteLine(@"7. Solution using eigen value decomposition"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 8. Verify result. Multiply new coefficient matrix "A" by result vector "x" reconstructVecorB = newMatrixA*resultX; Console.WriteLine(@"8. Multiply new coefficient matrix 'A' by result vector 'x'"); Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); } } }