// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Globalization; using MathNet.Numerics.LinearAlgebra.Double; namespace Examples.LinearAlgebra.FactorizationExamples { /// /// EVD factorization example. If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is /// diagonal and the eigenvector matrix V is orthogonal. I.e. A = V*D*V' and V*VT=I. /// If A is not symmetric, then the eigenvalue matrix D is block diagonal /// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, /// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The /// columns of V represent the eigenvectors in the sense thatA * V = V * D. /// The matrix V may be badly conditioned, or even singular, so the validity of the equation /// A = V*D*Inverse(V) depends upon V.Condition() /// /// public class Evd : IExample { /// /// Gets the name of this example /// public string Name { get { return "Evd factorization"; } } /// /// Gets the description of this example /// public string Description { get { return "Perform the Evd factorization: eigenvalues and eigenvectors calculation"; } } /// /// Run example /// /// EVD decomposition public void Run() { // Format matrix output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Create square symmetric matrix var matrix = DenseMatrix.OfArray(new[,] { { 1.0, 2.0, 3.0 }, { 2.0, 1.0, 4.0 }, { 3.0, 4.0, 1.0 } }); Console.WriteLine(@"Initial square symmetric matrix"); Console.WriteLine(matrix.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Perform eigenvalue decomposition of symmetric matrix var evd = matrix.Evd(); Console.WriteLine(@"Perform eigenvalue decomposition of symmetric matrix"); // 1. Eigen vectors Console.WriteLine(@"1. Eigen vectors"); Console.WriteLine(evd.EigenVectors.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 2. Eigen values as a complex vector Console.WriteLine(@"2. Eigen values as a complex vector"); Console.WriteLine(evd.EigenValues.ToString("N", formatProvider)); Console.WriteLine(); // 3. Eigen values as the block diagonal matrix Console.WriteLine(@"3. Eigen values as the block diagonal matrix"); Console.WriteLine(evd.D.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 4. Multiply V by its transpose VT var identity = evd.EigenVectors.TransposeAndMultiply(evd.EigenVectors); Console.WriteLine(@"4. Multiply V by its transpose VT: V*VT = I"); Console.WriteLine(identity.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 5. Reconstruct initial matrix: A = V*D*V' var reconstruct = evd.EigenVectors * evd.D * evd.EigenVectors.Transpose(); Console.WriteLine(@"5. Reconstruct initial matrix: A = V*D*V'"); Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 6. Determinant of the matrix Console.WriteLine(@"6. Determinant of the matrix"); Console.WriteLine(evd.Determinant); Console.WriteLine(); // 7. Rank of the matrix Console.WriteLine(@"7. Rank of the matrix"); Console.WriteLine(evd.Rank); Console.WriteLine(); // Fill matrix by random values var rnd = new Random(1); for (var i = 0; i < matrix.RowCount; i++) { for (var j = 0; j < matrix.ColumnCount; j++) { matrix[i, j] = rnd.NextDouble(); } } Console.WriteLine(@"Fill matrix by random values"); Console.WriteLine(matrix.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Perform eigenvalue decomposition of non-symmetric matrix evd = matrix.Evd(); Console.WriteLine(@"Perform eigenvalue decomposition of non-symmetric matrix"); // 8. Eigen vectors Console.WriteLine(@"8. Eigen vectors"); Console.WriteLine(evd.EigenVectors.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 9. Eigen values as a complex vector Console.WriteLine(@"9. Eigen values as a complex vector"); Console.WriteLine(evd.EigenValues.ToString("N", formatProvider)); Console.WriteLine(); // 10. Eigen values as the block diagonal matrix Console.WriteLine(@"10. Eigen values as the block diagonal matrix"); Console.WriteLine(evd.D.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 11. Multiply A * V var av = matrix * evd.EigenVectors; Console.WriteLine(@"11. Multiply A * V"); Console.WriteLine(av.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 12. Multiply V * D var vd = evd.EigenVectors * evd.D; Console.WriteLine(@"12. Multiply V * D"); Console.WriteLine(vd.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 13. Reconstruct non-symmetriv matrix A = V * D * Vinverse reconstruct = evd.EigenVectors * evd.D * evd.EigenVectors.Inverse(); Console.WriteLine(@"13. Reconstruct non-symmetriv matrix A = V * D * Vinverse"); Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 14. Determinant of the matrix Console.WriteLine(@"14. Determinant of the matrix"); Console.WriteLine(evd.Determinant); Console.WriteLine(); // 15. Rank of the matrix Console.WriteLine(@"15. Rank of the matrix"); Console.WriteLine(evd.Rank); Console.WriteLine(); } } }