//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using MathNet.Numerics;
namespace Examples.SignalsExamples
{
///
/// Example of generic function sampling and quantization provider
///
public class Equidistant : IExample
{
///
/// Gets the name of this example
///
public string Name
{
get
{
return "Sampling - Equidistant";
}
}
///
/// Gets the description of this example
///
public string Description
{
get
{
return "Samples a function equidistant";
}
}
///
/// Run example
///
public void Run()
{
// 1. Get 11 samples of f(x) = (x * x) / 2 equidistant within interval [-5, 5]
var result = Generate.LinearSpacedMap(11, -5, 5, Function);
Console.WriteLine(@"1. Get 11 samples of f(x) = (x * x) / 2 equidistant within interval [-5, 5]");
for (var i = 0; i < result.Length; i++)
{
Console.Write(result[i].ToString("N") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 2. Get 10 samples of f(x) = (x * x) / 2 equidistant starting at x=1 with step = 0.5 and retrieve sample points
double[] samplePoints = Generate.LinearSpaced(10, 1.0, 5.5);
result = Generate.Map(samplePoints, Function);
Console.WriteLine(@"2. Get 10 samples of f(x) = (x * x) / 2 equidistant starting at x=1 with step = 0.5 and retrieve sample points");
Console.Write(@"Points: ");
for (var i = 0; i < samplePoints.Length; i++)
{
Console.Write(samplePoints[i].ToString("N") + @" ");
}
Console.WriteLine();
Console.Write(@"Values: ");
for (var i = 0; i < result.Length; i++)
{
Console.Write(result[i].ToString("N") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 3. Get 10 samples of f(x) = (x * x) / 2 equidistant within period = 10 and period offset = 5
result = Generate.PeriodicMap(10, Function, 10, 1.0, 10, 5);
Console.WriteLine(@"3. Get 10 samples of f(x) = (x * x) / 2 equidistant within period = 10 and period offset = 5");
for (var i = 0; i < result.Length; i++)
{
Console.Write(result[i].ToString("N") + @" ");
}
Console.WriteLine();
}
///
/// Fucntion f(x) = (x * x) / 2
///
/// Input value
/// Calculation result
public double Function(double x)
{
return Math.Pow(x, 2) / 2;
}
}
}