// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using MathNet.Numerics; namespace Examples.SignalsExamples { /// /// Example of generic function sampling and quantization provider /// public class Equidistant : IExample { /// /// Gets the name of this example /// public string Name { get { return "Sampling - Equidistant"; } } /// /// Gets the description of this example /// public string Description { get { return "Samples a function equidistant"; } } /// /// Run example /// public void Run() { // 1. Get 11 samples of f(x) = (x * x) / 2 equidistant within interval [-5, 5] var result = Generate.LinearSpacedMap(11, -5, 5, Function); Console.WriteLine(@"1. Get 11 samples of f(x) = (x * x) / 2 equidistant within interval [-5, 5]"); for (var i = 0; i < result.Length; i++) { Console.Write(result[i].ToString("N") + @" "); } Console.WriteLine(); Console.WriteLine(); // 2. Get 10 samples of f(x) = (x * x) / 2 equidistant starting at x=1 with step = 0.5 and retrieve sample points double[] samplePoints = Generate.LinearSpaced(10, 1.0, 5.5); result = Generate.Map(samplePoints, Function); Console.WriteLine(@"2. Get 10 samples of f(x) = (x * x) / 2 equidistant starting at x=1 with step = 0.5 and retrieve sample points"); Console.Write(@"Points: "); for (var i = 0; i < samplePoints.Length; i++) { Console.Write(samplePoints[i].ToString("N") + @" "); } Console.WriteLine(); Console.Write(@"Values: "); for (var i = 0; i < result.Length; i++) { Console.Write(result[i].ToString("N") + @" "); } Console.WriteLine(); Console.WriteLine(); // 3. Get 10 samples of f(x) = (x * x) / 2 equidistant within period = 10 and period offset = 5 result = Generate.PeriodicMap(10, Function, 10, 1.0, 10, 5); Console.WriteLine(@"3. Get 10 samples of f(x) = (x * x) / 2 equidistant within period = 10 and period offset = 5"); for (var i = 0; i < result.Length; i++) { Console.Write(result[i].ToString("N") + @" "); } Console.WriteLine(); } /// /// Fucntion f(x) = (x * x) / 2 /// /// Input value /// Calculation result public double Function(double x) { return Math.Pow(x, 2) / 2; } } }