// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Globalization; using MathNet.Numerics.LinearAlgebra.Double; namespace Examples.LinearAlgebra.FactorizationExamples { /// /// Cholesky factorization example. For a symmetric, positive definite matrix A, the Cholesky factorization /// is an lower triangular matrix L so that A = L*L' /// /// public class Cholesky : IExample { /// /// Gets the name of this example /// public string Name { get { return "Cholesky factorization"; } } /// /// Gets the description of this example /// public string Description { get { return "Perform the Cholesky factorization to the appropriate class"; } } /// /// Run example /// /// Cholesky decomposition public void Run() { // Format matrix output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Create square, symmetric, positive definite matrix var matrix = DenseMatrix.OfArray(new[,] { { 2.0, 1.0 }, { 1.0, 2.0 } }); Console.WriteLine(@"Initial square, symmetric, positive definite matrix"); Console.WriteLine(matrix.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Perform Cholesky decomposition var cholesky = matrix.Cholesky(); Console.WriteLine(@"Perform Cholesky decomposition"); // 1. Lower triangular form of the Cholesky matrix Console.WriteLine(@"1. Lower triangular form of the Cholesky matrix"); Console.WriteLine(cholesky.Factor.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 2. Reconstruct initial matrix: A = L * LT var reconstruct = cholesky.Factor * cholesky.Factor.Transpose(); Console.WriteLine(@"2. Reconstruct initial matrix: A = L*LT"); Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 3. Get determinant of the matrix Console.WriteLine(@"3. Determinant of the matrix"); Console.WriteLine(cholesky.Determinant); Console.WriteLine(); // 4. Get log determinant of the matrix Console.WriteLine(@"4. Log determinant of the matrix"); Console.WriteLine(cholesky.DeterminantLn); Console.WriteLine(); } } }