module Matrices open MathNet.Numerics.LinearAlgebra open MathNet.Numerics.LinearAlgebra.Double open MathNet.Numerics.Distributions // Create a dense matrix directly from an array (by reference, without copy) // The array must be in column major order (column-by-column) let a1 = DenseMatrix(2, 3, [| 1.0; 2.0; 10.0; 20.0; 100.0; 300.0 |]) let a2 = DenseMatrix.raw 2 3 [| 1.0; 2.0; 10.0; 20.0; 100.0; 300.0 |] // Create a matrix of size 3x4 (3 rows, 4 columns) with a given number for each value let b1 : float Matrix = DenseMatrix.zero 3 4 let b2 = DenseMatrix.create 3 4 20.5 let b3 : float Matrix = SparseMatrix.zero 3 4 // Create a matrix of size 3x4 with random values sampled from a distribution let c : float Matrix = DenseMatrix.random 3 4 (Normal.WithMeanStdDev(2.0, 0.5)) // Create a matrix of size 3x4 with each value initialized by a lambda function let d1 = DenseMatrix.init 3 4 (fun i j -> float i / 100.0 + float j) let d2 = SparseMatrix.init 3 4 (fun i j -> if i=j then float i / 100.0 + float j else 0.0) // Matrices can also be constructed from sequences of rows or of columns let e1 = DenseMatrix.ofRowSeq (seq { for i in 1 .. 20 do yield Array.init 10 (fun j -> float j + 100.0 * float i) }) let e2 = SparseMatrix.ofRowSeq (seq { for i in 1 .. 20 do yield Array.init 10 (fun j -> if i%5 = 0 then float j + 100.0 * float i else 0.0) }) let e3 = DenseMatrix.ofColumnSeq (seq { for j in 1 .. 10 do yield Array.init 20 (fun i -> float j + 100.0 * float i) }) let e4 = SparseMatrix.ofColumnSeq (seq { for j in 1 .. 10 do yield Array.init 20 (fun i -> if i%5 = 0 then float j + 100.0 * float i else 0.0) }) // Or from F# lists let f1 = DenseMatrix.ofRowList [ for i in 1 .. 20 -> List.init 10 (fun j -> float j + 100.0 * float i) ] let f2 = SparseMatrix.ofRowList [ for i in 1 .. 20 -> List.init 10 (fun j -> if i%5 = 0 then float j + 100.0 * float i else 0.0) ] let f3 = DenseMatrix.ofColumnList [ for j in 1 .. 10 -> List.init 20 (fun i -> float j + 100.0 * float i) ] let f4 = SparseMatrix.ofColumnList [ for j in 1 .. 10 -> List.init 20 (fun i -> if i%5 = 0 then float j + 100.0 * float i else 0.0) ] // Or from row or column vectors let m1 = DenseMatrix.ofRows [DenseVector.create 3 1.0; DenseVector.create 3 2.0] let m2 = DenseMatrix.ofColumns [DenseVector.create 3 1.0; DenseVector.create 3 2.0] // Or from row or column arrays let n1 = DenseMatrix.ofRowArrays [| Array.create 3 1.0; Array.create 3 2.0 |] let n2 = DenseMatrix.ofColumnArrays [| Array.create 3 1.0; Array.create 3 2.0 |] // Or from indexed lists or sequences where all other values are zero (useful mostly for sparse data) let g1 = DenseMatrix.ofListi 20 10 [(4,3,20.0); (18,9,3.0); (2,1,100.0)] let g2 = SparseMatrix.ofListi 20 10 [(4,3,20.0); (18,9,3.0); (2,1,100.0)] let g3 = SparseMatrix.ofSeqi 20 10 (Seq.ofList [(4,3,20.0); (18,9,3.0); (2,1,100.0)]) // Another way to create dense matrix is using the matrix function. let h = matrix [[1.0; 2.0; 3.0] [10.0; 11.0; 12.0]] // Or create it from a multi-dimensional array let k = DenseMatrix.ofArray2 (array2D [[1.0; 2.0; 3.0]; [10.0; 11.0; 12.0]]) // We can now add two matrices together ... let z = a1 + a2 // ... or scale them in the process. let x = e1 + 3.0 * e4 - g2 // "pretty" printing (configurable with the Control class): printfn "A: %A" e3 printfn "B: %s" (e3.ToString()) printfn "C: %s" (e3.ToTypeString()) printfn "D:\n%s" (e3.ToMatrixString(20, 20)) printfn "E:\n%s" (e3.ToMatrixString(4, 10))