// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // http://mathnetnumerics.codeplex.com // Copyright (c) 2009-2010 Math.NET // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using MathNet.Numerics.Distributions; namespace Examples.ContinuousDistributionsExamples { /// /// Triangular distribution example /// public class TriangularDistribution : IExample { /// /// Gets the name of this example /// /// public string Name { get { return "Triangular distribution"; } } /// /// Gets the description of this example /// public string Description { get { return "Triangular distribution properties and samples generating examples"; } } /// /// Run example /// /// Triangular distribution public void Run() { // 1. Initialize var triangular = new Triangular(0, 1, 0.3); Console.WriteLine(@"1. Initialize the new instance of the Triangular distribution class with parameters Lower = {0}, Upper = {1}, Mode = {2}", triangular.LowerBound, triangular.UpperBound, triangular.Mode); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", triangular); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", triangular.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", triangular.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", triangular.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", triangular.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", triangular.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", triangular.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", triangular.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", triangular.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", triangular.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", triangular.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", triangular.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", triangular.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 10 samples Console.WriteLine(@"3. Generate 10 samples of the Triangular distribution"); for (var i = 0; i < 10; i++) { Console.Write(triangular.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 10000 samples with starting parameters Console.WriteLine(@"4. Generate 100000 samples of the Triangular(0, 1, 0.3) distribution and display histogram"); var data = new double[100000]; Triangular.Samples(data, 0.0, 1.0, 0.3); ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 10000 with different parameters Console.WriteLine(@"4. Generate 100000 samples of the Triangular(2, 10, 8) distribution and display histogram"); Triangular.Samples(data, 2.0, 10.0, 8.0); ConsoleHelper.DisplayHistogram(data); } } }