//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using MathNet.Numerics.Distributions;
namespace Examples.ContinuousDistributionsExamples
{
///
/// Normal distribution example
///
public class NormalDistribution : IExample
{
///
/// Gets the name of this example
///
///
public string Name
{
get
{
return "Normal distribution";
}
}
///
/// Gets the description of this example
///
public string Description
{
get
{
return "Normal distribution properties and samples generating examples";
}
}
///
/// Run example
///
/// Normal distribution
public void Run()
{
// 1. Initialize the new instance of the Normal distribution class with parameters Mean = 0, StdDev = 1
var normal = new Normal(0, 1);
Console.WriteLine(@"1. Initialize the new instance of the Normal distribution class with parameters Mean = {0}, StdDev = {1}", normal.Mean, normal.StdDev);
Console.WriteLine();
// 2. Distributuion properties:
Console.WriteLine(@"2. {0} distributuion properties:", normal);
// Cumulative distribution function
Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", normal.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));
// Probability density
Console.WriteLine(@"{0} - Probability density at location '0.3'", normal.Density(0.3).ToString(" #0.00000;-#0.00000"));
// Log probability density
Console.WriteLine(@"{0} - Log probability density at location '0.3'", normal.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));
// Entropy
Console.WriteLine(@"{0} - Entropy", normal.Entropy.ToString(" #0.00000;-#0.00000"));
// Largest element in the domain
Console.WriteLine(@"{0} - Largest element in the domain", normal.Maximum.ToString(" #0.00000;-#0.00000"));
// Smallest element in the domain
Console.WriteLine(@"{0} - Smallest element in the domain", normal.Minimum.ToString(" #0.00000;-#0.00000"));
// Mean
Console.WriteLine(@"{0} - Mean", normal.Mean.ToString(" #0.00000;-#0.00000"));
// Median
Console.WriteLine(@"{0} - Median", normal.Median.ToString(" #0.00000;-#0.00000"));
// Mode
Console.WriteLine(@"{0} - Mode", normal.Mode.ToString(" #0.00000;-#0.00000"));
// Variance
Console.WriteLine(@"{0} - Variance", normal.Variance.ToString(" #0.00000;-#0.00000"));
// Standard deviation
Console.WriteLine(@"{0} - Standard deviation", normal.StdDev.ToString(" #0.00000;-#0.00000"));
// Skewness
Console.WriteLine(@"{0} - Skewness", normal.Skewness.ToString(" #0.00000;-#0.00000"));
Console.WriteLine();
// 3. Generate 10 samples
Console.WriteLine(@"3. Generate 10 samples");
for (var i = 0; i < 10; i++)
{
Console.Write(normal.Sample().ToString("N05") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 4. Generate 100000 samples of the Normal(0, 1) distribution and display histogram
Console.WriteLine(@"4. Generate 100000 samples of the Normal(0, 1) distribution and display histogram");
var data = new double[100000];
Normal.Samples(data, 0.0, 1.0);
ConsoleHelper.DisplayHistogram(data);
Console.WriteLine();
// 5. Generate 100000 samples of the Normal(-10, 0.2) distribution and display histogram
Console.WriteLine(@"5. Generate 100000 samples of the Normal(-10, 0.01) distribution and display histogram");
Normal.Samples(data, -10.0, 0.01);
ConsoleHelper.DisplayHistogram(data);
}
}
}