Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

665 lines
34 KiB

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Fit - Math.NET Numerics Documentation</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<link type="text/css" rel="stylesheet" href="../main.css"/>
<script type="text/javascript" src="../js/jquery-1.3.2.min.js"></script>
<script type="text/javascript" src="../js/jquery.scrollTo-min.js"></script>
<script type="text/javascript" src="../js/navigation.js"></script>
<script type="text/javascript" src="../js/example.js"></script>
</head>
<body><div id="namespaces">
<h2 class="fixed">Namespaces</h2>
<div class="scroll">
<ul>
<li>
<a href="../MathNet.Numerics/index.htm" class="current">MathNet.Numerics</a>
</li>
<li>
<a href="../MathNet.Numerics.Differentiation/index.htm">MathNet.Numerics.Differentiation</a>
</li>
<li>
<a href="../MathNet.Numerics.Distributions/index.htm">MathNet.Numerics.Distributions</a>
</li>
<li>
<a href="../MathNet.Numerics.Financial/index.htm">MathNet.Numerics.Financial</a>
</li>
<li>
<a href="../MathNet.Numerics.IntegralTransforms/index.htm">MathNet.Numerics.IntegralTransforms</a>
</li>
<li>
<a href="../MathNet.Numerics.Integration/index.htm">MathNet.Numerics.Integration</a>
</li>
<li>
<a href="../MathNet.Numerics.Interpolation/index.htm">MathNet.Numerics.Interpolation</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra/index.htm">MathNet.Numerics.LinearAlgebra</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Complex/index.htm">MathNet.Numerics.LinearAlgebra.Complex</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Complex.Solvers/index.htm">MathNet.Numerics.LinearAlgebra.Complex.Solvers</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Complex32/index.htm">MathNet.Numerics.LinearAlgebra.Complex32</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Complex32.Solvers/index.htm">MathNet.Numerics.LinearAlgebra.Complex32.Solvers</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Double/index.htm">MathNet.Numerics.LinearAlgebra.Double</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Double.Solvers/index.htm">MathNet.Numerics.LinearAlgebra.Double.Solvers</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Factorization/index.htm">MathNet.Numerics.LinearAlgebra.Factorization</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Single/index.htm">MathNet.Numerics.LinearAlgebra.Single</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Single.Solvers/index.htm">MathNet.Numerics.LinearAlgebra.Single.Solvers</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Solvers/index.htm">MathNet.Numerics.LinearAlgebra.Solvers</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearAlgebra.Storage/index.htm">MathNet.Numerics.LinearAlgebra.Storage</a>
</li>
<li>
<a href="../MathNet.Numerics.LinearRegression/index.htm">MathNet.Numerics.LinearRegression</a>
</li>
<li>
<a href="../MathNet.Numerics.OdeSolvers/index.htm">MathNet.Numerics.OdeSolvers</a>
</li>
<li>
<a href="../MathNet.Numerics.Optimization/index.htm">MathNet.Numerics.Optimization</a>
</li>
<li>
<a href="../MathNet.Numerics.Optimization.LineSearch/index.htm">MathNet.Numerics.Optimization.LineSearch</a>
</li>
<li>
<a href="../MathNet.Numerics.Optimization.ObjectiveFunctions/index.htm">MathNet.Numerics.Optimization.ObjectiveFunctions</a>
</li>
<li>
<a href="../MathNet.Numerics.Optimization.TrustRegion/index.htm">MathNet.Numerics.Optimization.TrustRegion</a>
</li>
<li>
<a href="../MathNet.Numerics.Providers/index.htm">MathNet.Numerics.Providers</a>
</li>
<li>
<a href="../MathNet.Numerics.Providers.FourierTransform/index.htm">MathNet.Numerics.Providers.FourierTransform</a>
</li>
<li>
<a href="../MathNet.Numerics.Providers.LinearAlgebra/index.htm">MathNet.Numerics.Providers.LinearAlgebra</a>
</li>
<li>
<a href="../MathNet.Numerics.Providers.SparseSolver/index.htm">MathNet.Numerics.Providers.SparseSolver</a>
</li>
<li>
<a href="../MathNet.Numerics.Random/index.htm">MathNet.Numerics.Random</a>
</li>
<li>
<a href="../MathNet.Numerics.RootFinding/index.htm">MathNet.Numerics.RootFinding</a>
</li>
<li>
<a href="../MathNet.Numerics.Statistics/index.htm">MathNet.Numerics.Statistics</a>
</li>
<li>
<a href="../MathNet.Numerics.Statistics.Mcmc/index.htm">MathNet.Numerics.Statistics.Mcmc</a>
</li>
</ul>
</div>
</div><div id="types">
<h2 class="fixed">Types in MathNet.Numerics</h2>
<div class="scroll">
<ul>
<li>
<a href="../MathNet.Numerics/AppSwitches.htm">AppSwitches</a>
</li>
<li>
<a href="../MathNet.Numerics/Combinatorics.htm">Combinatorics</a>
</li>
<li>
<a href="../MathNet.Numerics/Complex32.htm">Complex32</a>
</li>
<li>
<a href="../MathNet.Numerics/ComplexExtensions.htm">ComplexExtensions</a>
</li>
<li>
<a href="../MathNet.Numerics/Constants.htm">Constants</a>
</li>
<li>
<a href="../MathNet.Numerics/ContourIntegrate.htm">ContourIntegrate</a>
</li>
<li>
<a href="../MathNet.Numerics/Control.htm">Control</a>
</li>
<li>
<a href="../MathNet.Numerics/Differentiate.htm">Differentiate</a>
</li>
<li>
<a href="../MathNet.Numerics/DifferIntegrate.htm">DifferIntegrate</a>
</li>
<li>
<a href="../MathNet.Numerics/Distance.htm">Distance</a>
</li>
<li>
<a href="../MathNet.Numerics/Euclid.htm">Euclid</a>
</li>
<li>
<a href="../MathNet.Numerics/ExcelFunctions.htm">ExcelFunctions</a>
</li>
<li>
<a href="../MathNet.Numerics/FindMinimum.htm">FindMinimum</a>
</li>
<li>
<a href="../MathNet.Numerics/FindRoots.htm">FindRoots</a>
</li>
<li>
<a href="../MathNet.Numerics/Fit.htm" class="current">Fit</a>
</li>
<li>
<a href="../MathNet.Numerics/Generate.htm">Generate</a>
</li>
<li>
<a href="../MathNet.Numerics/GoodnessOfFit.htm">GoodnessOfFit</a>
</li>
<li>
<a href="../MathNet.Numerics/Integrate.htm">Integrate</a>
</li>
<li>
<a href="../MathNet.Numerics/Interpolate.htm">Interpolate</a>
</li>
<li>
<a href="../MathNet.Numerics/InvalidParameterException.htm">InvalidParameterException</a>
</li>
<li>
<a href="../MathNet.Numerics/IPrecisionSupport`1.htm">IPrecisionSupport&lt;T&gt;</a>
</li>
<li>
<a href="../MathNet.Numerics/MemoryAllocationException.htm">MemoryAllocationException</a>
</li>
<li>
<a href="../MathNet.Numerics/NativeInterfaceException.htm">NativeInterfaceException</a>
</li>
<li>
<a href="../MathNet.Numerics/NonConvergenceException.htm">NonConvergenceException</a>
</li>
<li>
<a href="../MathNet.Numerics/NumericalBreakdownException.htm">NumericalBreakdownException</a>
</li>
<li>
<a href="../MathNet.Numerics/Permutation.htm">Permutation</a>
</li>
<li>
<a href="../MathNet.Numerics/Polynomial.htm">Polynomial</a>
</li>
<li>
<a href="../MathNet.Numerics/Precision.htm">Precision</a>
</li>
<li>
<a href="../MathNet.Numerics/Series.htm">Series</a>
</li>
<li>
<a href="../MathNet.Numerics/SingularUMatrixException.htm">SingularUMatrixException</a>
</li>
<li>
<a href="../MathNet.Numerics/Sorting.htm">Sorting</a>
</li>
<li>
<a href="../MathNet.Numerics/SpecialFunctions.htm">SpecialFunctions</a>
</li>
<li>
<a href="../MathNet.Numerics/TestFunctions.htm">TestFunctions</a>
</li>
<li>
<a href="../MathNet.Numerics/Trig.htm">Trig</a>
</li>
<li>
<a href="../MathNet.Numerics/Window.htm">Window</a>
</li>
</ul>
</div>
</div>
<div class="header">
<p class="class"><strong>Type</strong> Fit</p>
<p><strong>Namespace</strong> MathNet.Numerics</p>
</div>
<div class="sub-header">
<div id="summary">Least-Squares Curve Fitting Routines
</div>
<h3 class="section">Static Functions</h3>
<ul>
<li><a href="../MathNet.Numerics/Fit.htm#Curve">Curve</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Curve">Curve</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Curve">Curve</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Curve">Curve</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Curve">Curve</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#CurveFunc">CurveFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#CurveFunc">CurveFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#CurveFunc">CurveFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#CurveFunc">CurveFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#CurveFunc">CurveFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Exponential">Exponential</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#ExponentialFunc">ExponentialFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Line">Line</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearCombination">LinearCombination</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearCombination">LinearCombination</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearCombinationFunc">LinearCombinationFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearCombinationFunc">LinearCombinationFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearGeneric``1">LinearGeneric&lt;T&gt;</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearGeneric``1">LinearGeneric&lt;T&gt;</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearGenericFunc``1">LinearGenericFunc&lt;T&gt;</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearGenericFunc``1">LinearGenericFunc&lt;T&gt;</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearMultiDim">LinearMultiDim</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearMultiDim">LinearMultiDim</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearMultiDimFunc">LinearMultiDimFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LinearMultiDimFunc">LinearMultiDimFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LineFunc">LineFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LineThroughOrigin">LineThroughOrigin</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LineThroughOriginFunc">LineThroughOriginFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Logarithm">Logarithm</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#LogarithmFunc">LogarithmFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#MultiDim">MultiDim</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#MultiDimFunc">MultiDimFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#MultiDimWeighted">MultiDimWeighted</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Polynomial">Polynomial</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#PolynomialFunc">PolynomialFunc</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#PolynomialWeighted">PolynomialWeighted</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#Power">Power</a></li>
<li><a href="../MathNet.Numerics/Fit.htm#PowerFunc">PowerFunc</a></li>
</ul>
</div>
<h3 class="section">Public Static Functions</h3>
<div id="Curve" class="method">
<h4><span title="System.ValueTuple<double, double, double, double>">ValueTuple&lt;double, double, double, double&gt;</span> <strong>Curve</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double, double, double>">Func&lt;double, double, double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> initialGuess2, <span title="System.double">double</span> initialGuess3, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, p3, x),
returning its best fitting parameter p0, p1, p2 and p3.
</div>
</div>
<div id="Curve" class="method">
<h4><span title="System.ValueTuple<double, double, double, double, double>">ValueTuple&lt;double, double, double, double, double&gt;</span> <strong>Curve</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double, double, double, double>">Func&lt;double, double, double, double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> initialGuess2, <span title="System.double">double</span> initialGuess3, <span title="System.double">double</span> initialGuess4, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, p3, p4, x),
returning its best fitting parameter p0, p1, p2, p3 and p4.
</div>
</div>
<div id="Curve" class="method">
<h4><span title="System.ValueTuple<double, double, double>">ValueTuple&lt;double, double, double&gt;</span> <strong>Curve</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double, double>">Func&lt;double, double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> initialGuess2, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, x),
returning its best fitting parameter p0, p1 and p2.
</div>
</div>
<div id="Curve" class="method">
<h4><span title="System.double">double</span> <strong>Curve</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double>">Func&lt;double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p, x),
returning its best fitting parameter p.
</div>
</div>
<div id="Curve" class="method">
<h4><span title="System.ValueTuple<double, double>">ValueTuple&lt;double, double&gt;</span> <strong>Curve</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double>">Func&lt;double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, x),
returning its best fitting parameter p0 and p1.
</div>
</div>
<div id="CurveFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>CurveFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double, double, double, double>">Func&lt;double, double, double, double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> initialGuess2, <span title="System.double">double</span> initialGuess3, <span title="System.double">double</span> initialGuess4, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, p3, p4, x),
returning a function y' for the best fitting curve.
</div>
</div>
<div id="CurveFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>CurveFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double, double, double>">Func&lt;double, double, double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> initialGuess2, <span title="System.double">double</span> initialGuess3, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, p3, x),
returning a function y' for the best fitting curve.
</div>
</div>
<div id="CurveFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>CurveFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double, double>">Func&lt;double, double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> initialGuess2, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, x),
returning a function y' for the best fitting curve.
</div>
</div>
<div id="CurveFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>CurveFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double, double>">Func&lt;double, double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess0, <span title="System.double">double</span> initialGuess1, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, x),
returning a function y' for the best fitting curve.
</div>
</div>
<div id="CurveFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>CurveFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func<double, double, double>">Func&lt;double, double, double&gt;</span> f, <span title="System.double">double</span> initialGuess, <span title="System.double">double</span> tolerance, <span title="System.int">int</span> maxIterations)</h4>
<div class="content">Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p, x),
returning a function y' for the best fitting curve.
</div>
</div>
<div id="Exponential" class="method">
<h4><span title="System.ValueTuple<double, double>">ValueTuple&lt;double, double&gt;</span> <strong>Exponential</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to an exponential y : x -> a*exp(r*x),
returning its best fitting parameters as (a, r) tuple.
</div>
</div>
<div id="ExponentialFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>ExponentialFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to an exponential y : x -> a*exp(r*x),
returning a function y' for the best fitting line.
</div>
</div>
<div id="Line" class="method">
<h4><span title="System.ValueTuple<double, double>">ValueTuple&lt;double, double&gt;</span> <strong>Line</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a line y : x -> a+b*x,
returning its best fitting parameters as [a, b] array,
where a is the intercept and b the slope.
</div>
</div>
<div id="LinearCombination" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>LinearCombination</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearCombination" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>LinearCombination</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearCombinationFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>LinearCombinationFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearCombinationFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>LinearCombinationFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearGeneric``1" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>LinearGeneric&lt;T&gt;</strong>(<span title="MathNet.Numerics.T[]">T[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearGeneric``1" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>LinearGeneric&lt;T&gt;</strong>(<span title="MathNet.Numerics.T[]">T[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearGenericFunc``1" class="method">
<h4><span title="System.Func<T, double>">Func&lt;T, double&gt;</span> <strong>LinearGenericFunc&lt;T&gt;</strong>(<span title="MathNet.Numerics.T[]">T[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearGenericFunc``1" class="method">
<h4><span title="System.Func<T, double>">Func&lt;T, double&gt;</span> <strong>LinearGenericFunc&lt;T&gt;</strong>(<span title="MathNet.Numerics.T[]">T[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearMultiDim" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>LinearMultiDim</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearMultiDim" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>LinearMultiDim</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearMultiDimFunc" class="method">
<h4><span title="System.Func<Double[], double>">Func&lt;Double[], double&gt;</span> <strong>LinearMultiDimFunc</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LinearMultiDimFunc" class="method">
<h4><span title="System.Func<Double[], double>">Func&lt;Double[], double&gt;</span> <strong>LinearMultiDimFunc</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method, <span title="System.Func`2[]">Func`2[]</span> functions)</h4>
<div class="content">
</div>
</div>
<div id="LineFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>LineFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a line y : x -> a+b*x,
returning a function y' for the best fitting line.
</div>
</div>
<div id="LineThroughOrigin" class="method">
<h4><span title="System.double">double</span> <strong>LineThroughOrigin</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a line through origin y : x -> b*x,
returning its best fitting parameter b,
where the intercept is zero and b the slope.
</div>
</div>
<div id="LineThroughOriginFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>LineThroughOriginFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a line through origin y : x -> b*x,
returning a function y' for the best fitting line.
</div>
</div>
<div id="Logarithm" class="method">
<h4><span title="System.ValueTuple<double, double>">ValueTuple&lt;double, double&gt;</span> <strong>Logarithm</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a logarithm y : x -> a + b*ln(x),
returning its best fitting parameters as (a, b) tuple.
</div>
</div>
<div id="LogarithmFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>LogarithmFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a logarithm y : x -> a + b*ln(x),
returning a function y' for the best fitting line.
</div>
</div>
<div id="MultiDim" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>MultiDim</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.bool">bool</span> intercept, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">
</div>
</div>
<div id="MultiDimFunc" class="method">
<h4><span title="System.Func<Double[], double>">Func&lt;Double[], double&gt;</span> <strong>MultiDimFunc</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.bool">bool</span> intercept, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">
</div>
</div>
<div id="MultiDimWeighted" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>MultiDimWeighted</strong>(<span title="System.Double[][]">Double[][]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Double[]">Double[]</span> w)</h4>
<div class="content">
</div>
</div>
<div id="Polynomial" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>Polynomial</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.int">int</span> order, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a k-order polynomial y : x -> p0 + p1*x + p2*x^2 +... + pk*x^k,
returning its best fitting parameters as [p0, p1, p2,..., pk] array, compatible with Polynomial.Evaluate.
A polynomial with order/degree k has (k+1) coefficients and thus requires at least (k+1) samples.
</div>
</div>
<div id="PolynomialFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>PolynomialFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.int">int</span> order, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a k-order polynomial y : x -> p0 + p1*x + p2*x^2 +... + pk*x^k,
returning a function y' for the best fitting polynomial.
A polynomial with order/degree k has (k+1) coefficients and thus requires at least (k+1) samples.
</div>
</div>
<div id="PolynomialWeighted" class="method">
<h4><span title="System.Double[]">Double[]</span> <strong>PolynomialWeighted</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <span title="System.Double[]">Double[]</span> w, <span title="System.int">int</span> order)</h4>
<div class="content">Weighted Least-Squares fitting the points (x,y) and weights w to a k-order polynomial y : x -> p0 + p1*x + p2*x^2 +... + pk*x^k,
returning its best fitting parameters as [p0, p1, p2,..., pk] array, compatible with Polynomial.Evaluate.
A polynomial with order/degree k has (k+1) coefficients and thus requires at least (k+1) samples.
</div>
</div>
<div id="Power" class="method">
<h4><span title="System.ValueTuple<double, double>">ValueTuple&lt;double, double&gt;</span> <strong>Power</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a power y : x -> a*x^b,
returning its best fitting parameters as (a, b) tuple.
</div>
</div>
<div id="PowerFunc" class="method">
<h4><span title="System.Func<double, double>">Func&lt;double, double&gt;</span> <strong>PowerFunc</strong>(<span title="System.Double[]">Double[]</span> x, <span title="System.Double[]">Double[]</span> y, <a href="../MathNet.Numerics.LinearRegression/DirectRegressionMethod.htm">DirectRegressionMethod</a> method)</h4>
<div class="content">Least-Squares fitting the points (x,y) to a power y : x -> a*x^b,
returning a function y' for the best fitting line.
</div>
</div>
<div id="footer">
<p>Based on v5.0.0.0 of MathNet.Numerics (Math.NET Numerics)</p>
<p>Generated by <a href="http://docu.jagregory.com">docu</a></p>
</div>
</body>
</html>