csharpfftfsharpintegrationinterpolationlinear-algebramathdifferentiationmatrixnumericsrandomregressionstatisticsmathnet
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
5.5 KiB
126 lines
5.5 KiB
// <copyright file="CategoricalDistribution.cs" company="Math.NET">
|
|
// Math.NET Numerics, part of the Math.NET Project
|
|
// http://numerics.mathdotnet.com
|
|
// http://github.com/mathnet/mathnet-numerics
|
|
// http://mathnetnumerics.codeplex.com
|
|
// Copyright (c) 2009-2010 Math.NET
|
|
// Permission is hereby granted, free of charge, to any person
|
|
// obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without
|
|
// restriction, including without limitation the rights to use,
|
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following
|
|
// conditions:
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
// </copyright>
|
|
|
|
using System;
|
|
using MathNet.Numerics.Distributions;
|
|
|
|
namespace Examples.DiscreteDistributionsExamples
|
|
{
|
|
/// <summary>
|
|
/// Categorical distribution example
|
|
/// </summary>
|
|
public class CategoricalDistribution : IExample
|
|
{
|
|
/// <summary>
|
|
/// Gets the name of this example
|
|
/// </summary>
|
|
public string Name
|
|
{
|
|
get
|
|
{
|
|
return "Categorical distribution";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the description of this example
|
|
/// </summary>
|
|
public string Description
|
|
{
|
|
get
|
|
{
|
|
return "Categorical distribution properties and samples generating examples";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run example
|
|
/// </summary>
|
|
/// <a href="http://en.wikipedia.org/wiki/Categorical_distribution">Categorical distribution</a>
|
|
public void Run()
|
|
{
|
|
// 1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)
|
|
var binomial = new Categorical(new[] { 0.1, 0.2, 0.25, 0.45 });
|
|
Console.WriteLine(@"1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)");
|
|
Console.WriteLine();
|
|
|
|
// 2. Distributuion properties:
|
|
Console.WriteLine(@"2. {0} distributuion properties:", binomial);
|
|
|
|
// Cumulative distribution function
|
|
Console.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Probability density
|
|
Console.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Log probability density
|
|
Console.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Entropy
|
|
Console.WriteLine(@"{0} - Entropy", binomial.Entropy.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Largest element in the domain
|
|
Console.WriteLine(@"{0} - Largest element in the domain", binomial.Maximum.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Smallest element in the domain
|
|
Console.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Mean
|
|
Console.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Median
|
|
Console.WriteLine(@"{0} - Median", binomial.Median.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Variance
|
|
Console.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// Standard deviation
|
|
Console.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000"));
|
|
|
|
// 3. Generate 10 samples of the Categorical distribution
|
|
Console.WriteLine(@"3. Generate 10 samples of the Categorical distribution");
|
|
for (var i = 0; i < 10; i++)
|
|
{
|
|
Console.Write(binomial.Sample().ToString("N05") + @" ");
|
|
}
|
|
|
|
Console.WriteLine();
|
|
Console.WriteLine();
|
|
|
|
// 4. Generate 100000 samples of the Categorical(new []{ 0.1, 0.2, 0.25, 0.45 }) distribution and display histogram
|
|
Console.WriteLine(@"4. Generate 100000 samples of the Categorical(0.1, 0.2, 0.25, 0.45) distribution and display histogram");
|
|
var data = new int[100000];
|
|
Categorical.Samples(data, new[] { 0.1, 0.2, 0.25, 0.45 });
|
|
ConsoleHelper.DisplayHistogram(data);
|
|
Console.WriteLine();
|
|
|
|
// 5. Generate 100000 samples of the Categorical(new []{ 0.6, 0.2, 0.1, 0.1 }) distribution and display histogram
|
|
Console.WriteLine(@"5. Generate 100000 samples of the Categorical(0.6, 0.2, 0.1, 0.1) distribution and display histogram");
|
|
Categorical.Samples(data, new[] { 0.6, 0.2, 0.1, 0.1 });
|
|
ConsoleHelper.DisplayHistogram(data);
|
|
}
|
|
}
|
|
}
|
|
|