Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

126 lines
5.5 KiB

// <copyright file="CategoricalDistribution.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics.Distributions;
namespace Examples.DiscreteDistributionsExamples
{
/// <summary>
/// Categorical distribution example
/// </summary>
public class CategoricalDistribution : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "Categorical distribution";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Categorical distribution properties and samples generating examples";
}
}
/// <summary>
/// Run example
/// </summary>
/// <a href="http://en.wikipedia.org/wiki/Categorical_distribution">Categorical distribution</a>
public void Run()
{
// 1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)
var binomial = new Categorical(new[] { 0.1, 0.2, 0.25, 0.45 });
Console.WriteLine(@"1. Initialize the new instance of the Categorical distribution class with parameters P = (0.1, 0.2, 0.25, 0.45)");
Console.WriteLine();
// 2. Distributuion properties:
Console.WriteLine(@"2. {0} distributuion properties:", binomial);
// Cumulative distribution function
Console.WriteLine(@"{0} - Сumulative distribution at location '3'", binomial.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000"));
// Probability density
Console.WriteLine(@"{0} - Probability mass at location '3'", binomial.Probability(3).ToString(" #0.00000;-#0.00000"));
// Log probability density
Console.WriteLine(@"{0} - Log probability mass at location '3'", binomial.ProbabilityLn(3).ToString(" #0.00000;-#0.00000"));
// Entropy
Console.WriteLine(@"{0} - Entropy", binomial.Entropy.ToString(" #0.00000;-#0.00000"));
// Largest element in the domain
Console.WriteLine(@"{0} - Largest element in the domain", binomial.Maximum.ToString(" #0.00000;-#0.00000"));
// Smallest element in the domain
Console.WriteLine(@"{0} - Smallest element in the domain", binomial.Minimum.ToString(" #0.00000;-#0.00000"));
// Mean
Console.WriteLine(@"{0} - Mean", binomial.Mean.ToString(" #0.00000;-#0.00000"));
// Median
Console.WriteLine(@"{0} - Median", binomial.Median.ToString(" #0.00000;-#0.00000"));
// Variance
Console.WriteLine(@"{0} - Variance", binomial.Variance.ToString(" #0.00000;-#0.00000"));
// Standard deviation
Console.WriteLine(@"{0} - Standard deviation", binomial.StdDev.ToString(" #0.00000;-#0.00000"));
// 3. Generate 10 samples of the Categorical distribution
Console.WriteLine(@"3. Generate 10 samples of the Categorical distribution");
for (var i = 0; i < 10; i++)
{
Console.Write(binomial.Sample().ToString("N05") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 4. Generate 100000 samples of the Categorical(new []{ 0.1, 0.2, 0.25, 0.45 }) distribution and display histogram
Console.WriteLine(@"4. Generate 100000 samples of the Categorical(0.1, 0.2, 0.25, 0.45) distribution and display histogram");
var data = new int[100000];
Categorical.Samples(data, new[] { 0.1, 0.2, 0.25, 0.45 });
ConsoleHelper.DisplayHistogram(data);
Console.WriteLine();
// 5. Generate 100000 samples of the Categorical(new []{ 0.6, 0.2, 0.1, 0.1 }) distribution and display histogram
Console.WriteLine(@"5. Generate 100000 samples of the Categorical(0.6, 0.2, 0.1, 0.1) distribution and display histogram");
Categorical.Samples(data, new[] { 0.6, 0.2, 0.1, 0.1 });
ConsoleHelper.DisplayHistogram(data);
}
}
}