Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

105 lines
4.0 KiB

// <copyright file="Integration.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics;
namespace Examples
{
/// <summary>
/// Numeric Integration (Quadrature)
/// </summary>
/// <seealso cref="http://reference.wolfram.com/mathematica/ref/Integrate.html"/>
public class Integration : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "Numeric Integration";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Analytic integration of smooth functions with no discontinuitie or derivative discontinuities and no poles inside the interval";
}
}
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/Trapezoidal_rule">Trapezoidal rule</seealso>
public void Run()
{
// 1. Integrate x*x on interval [0, 10]
Console.WriteLine(@"1. Integrate x*x on interval [0, 10]");
var result = Integrate.OnClosedInterval(x => x * x, 0, 10);
Console.WriteLine(result);
Console.WriteLine();
// 2. Integrate 1/(x^3 + 1) on interval [0, 1]
Console.WriteLine(@"2. Integrate 1/(x^3 + 1) on interval [0, 1]");
result = Integrate.OnClosedInterval(x => 1 / (Math.Pow(x, 3) + 1), 0, 1);
Console.WriteLine(result);
Console.WriteLine();
// 3. Integrate f(x) = exp(-x/5) (2 + sin(2 * x)) on [0, 10]
Console.WriteLine(@"3. Integrate f(x) = exp(-x/5) (2 + sin(2 * x)) on [0, 10]");
result = Integrate.OnClosedInterval(x => Math.Exp(-x / 5) * (2 + Math.Sin(2 * x)), 0, 100);
Console.WriteLine(result);
Console.WriteLine();
// 4. Integrate target function with absolute error = 1E-4
Console.WriteLine(@"4. Integrate target function with absolute error = 1E-4 on [0, 10]");
Console.WriteLine(@"public static double TargetFunctionA(double x)
{
return Math.Exp(-x / 5) * (2 + Math.Sin(2 * x));
}");
result = Integrate.OnClosedInterval(TargetFunctionA, 0, 100, 1e-4);
Console.WriteLine(result);
Console.WriteLine();
}
/// <summary>
/// Test Function: f(x) = exp(-x/5) (2 + sin(2 * x))
/// </summary>
/// <param name="x">X parameter value</param>
/// <returns>Calculation result</returns>
public static double TargetFunctionA(double x)
{
return Math.Exp(-x / 5) * (2 + Math.Sin(2 * x));
}
}
}