Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

117 lines
4.6 KiB

// <copyright file="LinearBetweenPoints.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics;
using MathNet.Numerics.Random;
namespace Examples.InterpolationExamples
{
/// <summary>
/// Interpolation example
/// </summary>
/// <seealso cref="http://reference.wolfram.com/mathematica/ref/Interpolation.html"/>
public class LinearBetweenPoints : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "Interpolation - Linear Between Points";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Linear Spline Interpolation Algorithm";
}
}
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/Spline_interpolation">Spline interpolation</seealso>
public void Run()
{
// 1. Generate 20 samples of the function x*x-2*x on interval [0, 10]
Console.WriteLine(@"1. Generate 20 samples of the function x*x-2*x on interval [0, 10]");
double[] points = Generate.LinearSpaced(20, 0, 10);
var values = Generate.Map(points, TargetFunction);
Console.WriteLine();
// 2. Create a linear spline interpolation based on arbitrary points
var method = Interpolate.Linear(points, values);
Console.WriteLine(@"2. Create a linear spline interpolation based on arbitrary points");
Console.WriteLine();
// 3. Check if interpolation support integration
Console.WriteLine(@"3. Support integration = {0}", method.SupportsIntegration);
Console.WriteLine();
// 4. Check if interpolation support differentiation
Console.WriteLine(@"4. Support differentiation = {0}", method.SupportsDifferentiation);
Console.WriteLine();
// 5. Differentiate at point 5.2
Console.WriteLine(@"5. Differentiate at point 5.2 = {0}", method.Differentiate(5.2));
Console.WriteLine();
// 6. Integrate at point 5.2
Console.WriteLine(@"6. Integrate at point 5.2 = {0}", method.Integrate(5.2));
Console.WriteLine();
// 7. Interpolate ten random points and compare to function results
Console.WriteLine(@"7. Interpolate ten random points and compare to function results");
var rng = new MersenneTwister(1);
for (var i = 0; i < 10; i++)
{
// Generate random value from [0, 10]
var point = rng.NextDouble() * 10;
Console.WriteLine(@"Interpolate at {0} = {1}. Function({0}) = {2}", point.ToString("N05"), method.Interpolate(point).ToString("N05"), TargetFunction(point).ToString("N05"));
}
Console.WriteLine();
}
/// <summary>
/// Test Function: f(x) = x * x - 2 * x
/// </summary>
/// <param name="x">X parameter value</param>
/// <returns>Calculation result</returns>
public static double TargetFunction(double x)
{
return (x * x) - (2 * x);
}
}
}