Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

131 lines
4.8 KiB

// <copyright file="Random.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics;
using MathNet.Numerics.Distributions;
namespace Examples.SignalsExamples
{
/// <summary>
/// Example of generic function sampling and quantization provider
/// </summary>
public class Random : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "Sampling - Random";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Samples a function randomly with the provided distribution";
}
}
/// <summary>
/// Run example
/// </summary>
public void Run()
{
// 1. Get 10 random samples of f(x) = (x * x) / 2 using continuous uniform distribution on [-10, 10]
var uniform = new ContinuousUniform(-10, 10);
var result = Generate.RandomMap(10, uniform, Function);
Console.WriteLine(@" 1. Get 10 random samples of f(x) = (x * x) / 2 using continuous uniform distribution on [-10, 10]");
for (var i = 0; i < result.Length; i++)
{
Console.Write(result[i].ToString("N") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 2. Get 10 random samples of f(x) = (x * x) / 2 using Exponential(1) distribution and retrieve sample points
var exponential = new Exponential(1);
double[] samplePoints = Generate.Random(10, exponential);
result = Generate.Map(samplePoints, Function);
Console.WriteLine(@"2. Get 10 random samples of f(x) = (x * x) / 2 using Exponential(1) distribution and retrieve sample points");
Console.Write(@"Points: ");
for (var i = 0; i < samplePoints.Length; i++)
{
Console.Write(samplePoints[i].ToString("N") + @" ");
}
Console.WriteLine();
Console.Write(@"Values: ");
for (var i = 0; i < result.Length; i++)
{
Console.Write(result[i].ToString("N") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 3. Get 10 random samples of f(x, y) = (x * y) / 2 using ChiSquare(10) distribution
var chiSquare = new ChiSquared(10);
result = Generate.RandomMap2(10, chiSquare, TwoDomainFunction);
Console.WriteLine(@" 3. Get 10 random samples of f(x, y) = (x * y) / 2 using ChiSquare(10) distribution");
for (var i = 0; i < result.Length; i++)
{
Console.Write(result[i].ToString("N") + @" ");
}
Console.WriteLine();
}
/// <summary>
/// Fucntion f(x, y) = (x * y) / 2
/// </summary>
/// <param name="x">Input value</param>
/// <returns>Calculation result</returns>
public double Function(double x)
{
return Math.Pow(x, 2) / 2;
}
/// <summary>
/// Fucntion f(x,y) = (x * y) / 2
/// </summary>
/// <param name="x">X input value</param>
/// <param name="y">Y input value</param>
/// <returns>Calculation result</returns>
public double TwoDomainFunction(double x, double y)
{
return (x * y) / 2;
}
}
}