Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

168 lines
6.1 KiB

module MCMC
open MathNet.Numerics
open MathNet.Numerics.Random
open MathNet.Numerics.Statistics
open MathNet.Numerics.Distributions
open MathNet.Numerics.Statistics.Mcmc
/// The number of samples to gather for each sampler.
let N = 10000
/// The random number generator we use for the examples.
let rnd = new MersenneTwister()
//
// Example 1: Sampling a Beta distributed variable through rejection sampling.
//
// Target Distribution: Beta(2.7, 6.3)
//
// -----------------------------------------------------------------------------
do
printfn "Rejection Sampling Example"
/// The target distribution.
let beta = new Beta(2.7, 6.3)
/// Samples uniform distributed variables.
let uniform = new ContinuousUniform(0.0, 1.0, RandomSource = rnd)
/// Implements the rejection sampling procedure.
let rs = new RejectionSampler<float>( ( fun x -> x**(beta.A-1.0) * (1.0 - x)**(beta.B-1.0) ),
( fun x -> 0.021 ),
( fun () -> uniform.Sample()) )
/// An array of samples from the rejection sampler.
let arr = rs.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) beta.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) beta.StdDev
printfn "\tAcceptance rate = %f" rs.AcceptanceRate
printfn ""
//
// Example 2: Sampling a normal distributed variable through Metropolis sampling.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------
do
printfn "Metropolis Sampling Example"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Implements the rejection sampling procedure.
let ms = new MetropolisSampler<float>( 0.1, (fun x -> log(normal.Density(x))),
(fun x -> Normal.Sample(rnd, x, 0.3)), 20,
RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""
//
// Example 3: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a symmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Symmetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Evaluates the log normal distribution.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)
/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler<float>( 0.1, (fun x -> log(normal.Density(x))),
(fun x y -> npdf x y 0.3), (fun x -> Normal.Sample(rnd, x, 0.3)), 10,
RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""
//
// Example 4: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a asymmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Assymetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Evaluates the logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)
/// Samples from a mixture that is biased towards samples larger than x.
let mixSample x =
if Bernoulli.Sample(rnd, 0.5) = 1 then
Normal.Sample(rnd, x, 0.3)
else
Normal.Sample(rnd, x + 0.1, 0.3)
/// The transition kernel for the proposal above.
let krnl xnew x = log (0.5 * exp(npdf xnew x 0.3) + 0.5 * exp(npdf xnew (x+0.1) 0.3))
/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler<float>( 0.1, (fun x -> log(normal.Density(x))),
(fun xnew x -> krnl xnew x), (fun x -> mixSample x), 10,
RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""
//
// Example 5: Slice sampling a normal distributed random variable.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Slice Sampling Example"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Evaluates the unnormalized logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s)
/// Implements the rejection sampling procedure.
let ms = new UnivariateSliceSampler( 0.1, (fun x -> npdf x mean stddev), 5, 1.0, RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn ""