csharpfftfsharpintegrationinterpolationlinear-algebramathdifferentiationmatrixnumericsrandomregressionstatisticsmathnet
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
6.3 KiB
144 lines
6.3 KiB
// <copyright file="DirectSolvers.cs" company="Math.NET">
|
|
// Math.NET Numerics, part of the Math.NET Project
|
|
// http://numerics.mathdotnet.com
|
|
// http://github.com/mathnet/mathnet-numerics
|
|
// http://mathnetnumerics.codeplex.com
|
|
// Copyright (c) 2009-2010 Math.NET
|
|
// Permission is hereby granted, free of charge, to any person
|
|
// obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without
|
|
// restriction, including without limitation the rights to use,
|
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following
|
|
// conditions:
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
// </copyright>
|
|
|
|
using System;
|
|
using System.Globalization;
|
|
using MathNet.Numerics.LinearAlgebra.Double;
|
|
|
|
namespace Examples.LinearAlgebraExamples
|
|
{
|
|
/// <summary>
|
|
/// Direct solvers (using matrix decompositions)
|
|
/// </summary>
|
|
/// <seealso cref="http://en.wikipedia.org/wiki/Numerical_analysis#Direct_and_iterative_methods"/>
|
|
public class DirectSolvers : IExample
|
|
{
|
|
/// <summary>
|
|
/// Gets the name of this example
|
|
/// </summary>
|
|
public string Name
|
|
{
|
|
get
|
|
{
|
|
return "Direct solvers";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the description of this example
|
|
/// </summary>
|
|
public string Description
|
|
{
|
|
get
|
|
{
|
|
return "Solve linear equations using matrix decompositions";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run example
|
|
/// </summary>
|
|
public void Run()
|
|
{
|
|
// Format matrix output to console
|
|
var formatProvider = (CultureInfo) CultureInfo.InvariantCulture.Clone();
|
|
formatProvider.TextInfo.ListSeparator = " ";
|
|
|
|
// Solve next system of linear equations (Ax=b):
|
|
// 5*x + 2*y - 4*z = -7
|
|
// 3*x - 7*y + 6*z = 38
|
|
// 4*x + 1*y + 5*z = 43
|
|
|
|
// Create matrix "A" with coefficients
|
|
var matrixA = DenseMatrix.OfArray(new[,] {{5.00, 2.00, -4.00}, {3.00, -7.00, 6.00}, {4.00, 1.00, 5.00}});
|
|
Console.WriteLine(@"Matrix 'A' with coefficients");
|
|
Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// Create vector "b" with the constant terms.
|
|
var vectorB = new DenseVector(new[] {-7.0, 38.0, 43.0});
|
|
Console.WriteLine(@"Vector 'b' with the constant terms");
|
|
Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 1. Solve linear equations using LU decomposition
|
|
var resultX = matrixA.LU().Solve(vectorB);
|
|
Console.WriteLine(@"1. Solution using LU decomposition");
|
|
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 2. Solve linear equations using QR decomposition
|
|
resultX = matrixA.QR().Solve(vectorB);
|
|
Console.WriteLine(@"2. Solution using QR decomposition");
|
|
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 3. Solve linear equations using SVD decomposition
|
|
matrixA.Svd().Solve(vectorB, resultX);
|
|
Console.WriteLine(@"3. Solution using SVD decomposition");
|
|
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 4. Solve linear equations using Gram-Shmidt decomposition
|
|
matrixA.GramSchmidt().Solve(vectorB, resultX);
|
|
Console.WriteLine(@"4. Solution using Gram-Shmidt decomposition");
|
|
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 5. Verify result. Multiply coefficient matrix "A" by result vector "x"
|
|
var reconstructVecorB = matrixA*resultX;
|
|
Console.WriteLine(@"5. Multiply coefficient matrix 'A' by result vector 'x'");
|
|
Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// To use Cholesky or Eigenvalue decomposition coefficient matrix must be
|
|
// symmetric (for Evd and Cholesky) and positive definite (for Cholesky)
|
|
// Multipy matrix "A" by its transpose - the result will be symmetric and positive definite matrix
|
|
var newMatrixA = matrixA.TransposeAndMultiply(matrixA);
|
|
Console.WriteLine(@"Symmetric positive definite matrix");
|
|
Console.WriteLine(newMatrixA.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 6. Solve linear equations using Cholesky decomposition
|
|
newMatrixA.Cholesky().Solve(vectorB, resultX);
|
|
Console.WriteLine(@"6. Solution using Cholesky decomposition");
|
|
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 7. Solve linear equations using eigen value decomposition
|
|
newMatrixA.Evd().Solve(vectorB, resultX);
|
|
Console.WriteLine(@"7. Solution using eigen value decomposition");
|
|
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 8. Verify result. Multiply new coefficient matrix "A" by result vector "x"
|
|
reconstructVecorB = newMatrixA*resultX;
|
|
Console.WriteLine(@"8. Multiply new coefficient matrix 'A' by result vector 'x'");
|
|
Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
}
|
|
}
|
|
}
|
|
|