csharpfftfsharpintegrationinterpolationlinear-algebramathdifferentiationmatrixnumericsrandomregressionstatisticsmathnet
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
7.7 KiB
185 lines
7.7 KiB
// <copyright file="Svd.cs" company="Math.NET">
|
|
// Math.NET Numerics, part of the Math.NET Project
|
|
// http://numerics.mathdotnet.com
|
|
// http://github.com/mathnet/mathnet-numerics
|
|
// http://mathnetnumerics.codeplex.com
|
|
// Copyright (c) 2009-2010 Math.NET
|
|
// Permission is hereby granted, free of charge, to any person
|
|
// obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without
|
|
// restriction, including without limitation the rights to use,
|
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following
|
|
// conditions:
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
// </copyright>
|
|
|
|
using System;
|
|
using System.Globalization;
|
|
using MathNet.Numerics.LinearAlgebra.Double;
|
|
|
|
namespace Examples.LinearAlgebra.FactorizationExamples
|
|
{
|
|
/// <summary>
|
|
/// SVD factorization example. Suppose M is an m-by-n matrix whose entries are real numbers.
|
|
/// Then there exists a factorization of the form M = UΣVT where:
|
|
/// - U is an m-by-m unitary matrix;
|
|
/// - Σ is m-by-n diagonal matrix with nonnegative real numbers on the diagonal;
|
|
/// - VT denotes transpose of V, an n-by-n unitary matrix;
|
|
/// Such a factorization is called a singular-value decomposition of M. A common convention is to order the diagonal
|
|
/// entries Σ(i,i) in descending order. In this case, the diagonal matrix Σ is uniquely determined
|
|
/// by M (though the matrices U and V are not). The diagonal entries of Σ are known as the singular values of M.
|
|
/// </summary>
|
|
/// <seealso cref="http://reference.wolfram.com/mathematica/ref/SingularValueDecomposition.html"/>
|
|
public class Svd : IExample
|
|
{
|
|
/// <summary>
|
|
/// Gets the name of this example
|
|
/// </summary>
|
|
public string Name
|
|
{
|
|
get
|
|
{
|
|
return "Svd factorization";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the description of this example
|
|
/// </summary>
|
|
public string Description
|
|
{
|
|
get
|
|
{
|
|
return "Perform the Svd factorization";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run example
|
|
/// </summary>
|
|
/// <seealso cref="http://en.wikipedia.org/wiki/Singular_value_decomposition">SVD decomposition</seealso>
|
|
public void Run()
|
|
{
|
|
// Format matrix output to console
|
|
var formatProvider = (CultureInfo) CultureInfo.InvariantCulture.Clone();
|
|
formatProvider.TextInfo.ListSeparator = " ";
|
|
|
|
// Create square matrix
|
|
var matrix = DenseMatrix.OfArray(new[,] {{4.0, 1.0}, {3.0, 2.0}});
|
|
Console.WriteLine(@"Initial square matrix");
|
|
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// Perform full SVD decomposition
|
|
var svd = matrix.Svd();
|
|
Console.WriteLine(@"Perform full SVD decomposition");
|
|
|
|
// 1. Left singular vectors
|
|
Console.WriteLine(@"1. Left singular vectors");
|
|
Console.WriteLine(svd.U.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 2. Singular values as vector
|
|
Console.WriteLine(@"2. Singular values as vector");
|
|
Console.WriteLine(svd.S.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 3. Singular values as diagonal matrix
|
|
Console.WriteLine(@"3. Singular values as diagonal matrix");
|
|
Console.WriteLine(svd.W.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 4. Right singular vectors
|
|
Console.WriteLine(@"4. Right singular vectors");
|
|
Console.WriteLine(svd.VT.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 5. Multiply U matrix by its transpose
|
|
var identinty = svd.U*svd.U.Transpose();
|
|
Console.WriteLine(@"5. Multiply U matrix by its transpose");
|
|
Console.WriteLine(identinty.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 6. Multiply V matrix by its transpose
|
|
identinty = svd.VT.TransposeAndMultiply(svd.VT);
|
|
Console.WriteLine(@"6. Multiply V matrix by its transpose");
|
|
Console.WriteLine(identinty.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 7. Reconstruct initial matrix: A = U*Σ*VT
|
|
var reconstruct = svd.U*svd.W*svd.VT;
|
|
Console.WriteLine(@"7. Reconstruct initial matrix: A = U*S*VT");
|
|
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 8. Condition Number of the matrix
|
|
Console.WriteLine(@"8. Condition Number of the matrix");
|
|
Console.WriteLine(svd.ConditionNumber);
|
|
Console.WriteLine();
|
|
|
|
// 9. Determinant of the matrix
|
|
Console.WriteLine(@"9. Determinant of the matrix");
|
|
Console.WriteLine(svd.Determinant);
|
|
Console.WriteLine();
|
|
|
|
// 10. 2-norm of the matrix
|
|
Console.WriteLine(@"10. 2-norm of the matrix");
|
|
Console.WriteLine(svd.L2Norm);
|
|
Console.WriteLine();
|
|
|
|
// 11. Rank of the matrix
|
|
Console.WriteLine(@"11. Rank of the matrix");
|
|
Console.WriteLine(svd.Rank);
|
|
Console.WriteLine();
|
|
|
|
// Perform partial SVD decomposition, without computing the singular U and VT vectors
|
|
svd = matrix.Svd(false);
|
|
Console.WriteLine(@"Perform partial SVD decomposition, without computing the singular U and VT vectors");
|
|
|
|
// 12. Singular values as vector
|
|
Console.WriteLine(@"12. Singular values as vector");
|
|
Console.WriteLine(svd.S.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 13. Singular values as diagonal matrix
|
|
Console.WriteLine(@"13. Singular values as diagonal matrix");
|
|
Console.WriteLine(svd.W.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 14. Access to left singular vectors when partial SVD decomposition was performed
|
|
try
|
|
{
|
|
Console.WriteLine(@"14. Access to left singular vectors when partial SVD decomposition was performed");
|
|
Console.WriteLine(svd.U.ToString("#0.00\t", formatProvider));
|
|
}
|
|
catch (Exception ex)
|
|
{
|
|
Console.WriteLine(ex.Message);
|
|
Console.WriteLine();
|
|
}
|
|
|
|
// 15. Access to right singular vectors when partial SVD decomposition was performed
|
|
try
|
|
{
|
|
Console.WriteLine(@"15. Access to right singular vectors when partial SVD decomposition was performed");
|
|
Console.WriteLine(svd.VT.ToString("#0.00\t", formatProvider));
|
|
}
|
|
catch (Exception ex)
|
|
{
|
|
Console.WriteLine(ex.Message);
|
|
Console.WriteLine();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|