Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

187 lines
7.9 KiB

// <copyright file="Evd.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using System.Globalization;
using MathNet.Numerics.LinearAlgebra.Double;
namespace Examples.LinearAlgebra.FactorizationExamples
{
/// <summary>
/// EVD factorization example. If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
/// diagonal and the eigenvector matrix V is orthogonal. I.e. A = V*D*V' and V*VT=I.
/// If A is not symmetric, then the eigenvalue matrix D is block diagonal
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
/// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
/// columns of V represent the eigenvectors in the sense thatA * V = V * D.
/// The matrix V may be badly conditioned, or even singular, so the validity of the equation
/// A = V*D*Inverse(V) depends upon V.Condition()
/// </summary>
/// <seealso cref="http://reference.wolfram.com/mathematica/ref/Norm.html"/>
public class Evd : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "Evd factorization";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Perform the Evd factorization: eigenvalues and eigenvectors calculation";
}
}
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace">EVD decomposition</seealso>
public void Run()
{
// Format matrix output to console
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
formatProvider.TextInfo.ListSeparator = " ";
// Create square symmetric matrix
var matrix = DenseMatrix.OfArray(new[,] { { 1.0, 2.0, 3.0 }, { 2.0, 1.0, 4.0 }, { 3.0, 4.0, 1.0 } });
Console.WriteLine(@"Initial square symmetric matrix");
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Perform eigenvalue decomposition of symmetric matrix
var evd = matrix.Evd();
Console.WriteLine(@"Perform eigenvalue decomposition of symmetric matrix");
// 1. Eigen vectors
Console.WriteLine(@"1. Eigen vectors");
Console.WriteLine(evd.EigenVectors.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 2. Eigen values as a complex vector
Console.WriteLine(@"2. Eigen values as a complex vector");
Console.WriteLine(evd.EigenValues.ToString("N", formatProvider));
Console.WriteLine();
// 3. Eigen values as the block diagonal matrix
Console.WriteLine(@"3. Eigen values as the block diagonal matrix");
Console.WriteLine(evd.D.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 4. Multiply V by its transpose VT
var identity = evd.EigenVectors.TransposeAndMultiply(evd.EigenVectors);
Console.WriteLine(@"4. Multiply V by its transpose VT: V*VT = I");
Console.WriteLine(identity.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 5. Reconstruct initial matrix: A = V*D*V'
var reconstruct = evd.EigenVectors * evd.D * evd.EigenVectors.Transpose();
Console.WriteLine(@"5. Reconstruct initial matrix: A = V*D*V'");
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 6. Determinant of the matrix
Console.WriteLine(@"6. Determinant of the matrix");
Console.WriteLine(evd.Determinant);
Console.WriteLine();
// 7. Rank of the matrix
Console.WriteLine(@"7. Rank of the matrix");
Console.WriteLine(evd.Rank);
Console.WriteLine();
// Fill matrix by random values
var rnd = new Random(1);
for (var i = 0; i < matrix.RowCount; i++)
{
for (var j = 0; j < matrix.ColumnCount; j++)
{
matrix[i, j] = rnd.NextDouble();
}
}
Console.WriteLine(@"Fill matrix by random values");
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Perform eigenvalue decomposition of non-symmetric matrix
evd = matrix.Evd();
Console.WriteLine(@"Perform eigenvalue decomposition of non-symmetric matrix");
// 8. Eigen vectors
Console.WriteLine(@"8. Eigen vectors");
Console.WriteLine(evd.EigenVectors.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 9. Eigen values as a complex vector
Console.WriteLine(@"9. Eigen values as a complex vector");
Console.WriteLine(evd.EigenValues.ToString("N", formatProvider));
Console.WriteLine();
// 10. Eigen values as the block diagonal matrix
Console.WriteLine(@"10. Eigen values as the block diagonal matrix");
Console.WriteLine(evd.D.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 11. Multiply A * V
var av = matrix * evd.EigenVectors;
Console.WriteLine(@"11. Multiply A * V");
Console.WriteLine(av.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 12. Multiply V * D
var vd = evd.EigenVectors * evd.D;
Console.WriteLine(@"12. Multiply V * D");
Console.WriteLine(vd.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 13. Reconstruct non-symmetriv matrix A = V * D * Vinverse
reconstruct = evd.EigenVectors * evd.D * evd.EigenVectors.Inverse();
Console.WriteLine(@"13. Reconstruct non-symmetriv matrix A = V * D * Vinverse");
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 14. Determinant of the matrix
Console.WriteLine(@"14. Determinant of the matrix");
Console.WriteLine(evd.Determinant);
Console.WriteLine();
// 15. Rank of the matrix
Console.WriteLine(@"15. Rank of the matrix");
Console.WriteLine(evd.Rank);
Console.WriteLine();
}
}
}