csharpfftfsharpintegrationinterpolationlinear-algebramathdifferentiationmatrixnumericsrandomregressionstatisticsmathnet
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
7.9 KiB
187 lines
7.9 KiB
// <copyright file="Evd.cs" company="Math.NET">
|
|
// Math.NET Numerics, part of the Math.NET Project
|
|
// http://numerics.mathdotnet.com
|
|
// http://github.com/mathnet/mathnet-numerics
|
|
// http://mathnetnumerics.codeplex.com
|
|
// Copyright (c) 2009-2010 Math.NET
|
|
// Permission is hereby granted, free of charge, to any person
|
|
// obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without
|
|
// restriction, including without limitation the rights to use,
|
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following
|
|
// conditions:
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
// </copyright>
|
|
|
|
using System;
|
|
using System.Globalization;
|
|
using MathNet.Numerics.LinearAlgebra.Double;
|
|
|
|
namespace Examples.LinearAlgebra.FactorizationExamples
|
|
{
|
|
/// <summary>
|
|
/// EVD factorization example. If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
|
/// diagonal and the eigenvector matrix V is orthogonal. I.e. A = V*D*V' and V*VT=I.
|
|
/// If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
|
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
|
/// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
|
/// columns of V represent the eigenvectors in the sense thatA * V = V * D.
|
|
/// The matrix V may be badly conditioned, or even singular, so the validity of the equation
|
|
/// A = V*D*Inverse(V) depends upon V.Condition()
|
|
/// </summary>
|
|
/// <seealso cref="http://reference.wolfram.com/mathematica/ref/Norm.html"/>
|
|
public class Evd : IExample
|
|
{
|
|
/// <summary>
|
|
/// Gets the name of this example
|
|
/// </summary>
|
|
public string Name
|
|
{
|
|
get
|
|
{
|
|
return "Evd factorization";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the description of this example
|
|
/// </summary>
|
|
public string Description
|
|
{
|
|
get
|
|
{
|
|
return "Perform the Evd factorization: eigenvalues and eigenvectors calculation";
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Run example
|
|
/// </summary>
|
|
/// <seealso cref="http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace">EVD decomposition</seealso>
|
|
public void Run()
|
|
{
|
|
// Format matrix output to console
|
|
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
|
|
formatProvider.TextInfo.ListSeparator = " ";
|
|
|
|
// Create square symmetric matrix
|
|
var matrix = DenseMatrix.OfArray(new[,] { { 1.0, 2.0, 3.0 }, { 2.0, 1.0, 4.0 }, { 3.0, 4.0, 1.0 } });
|
|
Console.WriteLine(@"Initial square symmetric matrix");
|
|
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// Perform eigenvalue decomposition of symmetric matrix
|
|
var evd = matrix.Evd();
|
|
Console.WriteLine(@"Perform eigenvalue decomposition of symmetric matrix");
|
|
|
|
// 1. Eigen vectors
|
|
Console.WriteLine(@"1. Eigen vectors");
|
|
Console.WriteLine(evd.EigenVectors.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 2. Eigen values as a complex vector
|
|
Console.WriteLine(@"2. Eigen values as a complex vector");
|
|
Console.WriteLine(evd.EigenValues.ToString("N", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 3. Eigen values as the block diagonal matrix
|
|
Console.WriteLine(@"3. Eigen values as the block diagonal matrix");
|
|
Console.WriteLine(evd.D.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 4. Multiply V by its transpose VT
|
|
var identity = evd.EigenVectors.TransposeAndMultiply(evd.EigenVectors);
|
|
Console.WriteLine(@"4. Multiply V by its transpose VT: V*VT = I");
|
|
Console.WriteLine(identity.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 5. Reconstruct initial matrix: A = V*D*V'
|
|
var reconstruct = evd.EigenVectors * evd.D * evd.EigenVectors.Transpose();
|
|
Console.WriteLine(@"5. Reconstruct initial matrix: A = V*D*V'");
|
|
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 6. Determinant of the matrix
|
|
Console.WriteLine(@"6. Determinant of the matrix");
|
|
Console.WriteLine(evd.Determinant);
|
|
Console.WriteLine();
|
|
|
|
// 7. Rank of the matrix
|
|
Console.WriteLine(@"7. Rank of the matrix");
|
|
Console.WriteLine(evd.Rank);
|
|
Console.WriteLine();
|
|
|
|
// Fill matrix by random values
|
|
var rnd = new Random(1);
|
|
for (var i = 0; i < matrix.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrix.ColumnCount; j++)
|
|
{
|
|
matrix[i, j] = rnd.NextDouble();
|
|
}
|
|
}
|
|
|
|
Console.WriteLine(@"Fill matrix by random values");
|
|
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// Perform eigenvalue decomposition of non-symmetric matrix
|
|
evd = matrix.Evd();
|
|
Console.WriteLine(@"Perform eigenvalue decomposition of non-symmetric matrix");
|
|
|
|
// 8. Eigen vectors
|
|
Console.WriteLine(@"8. Eigen vectors");
|
|
Console.WriteLine(evd.EigenVectors.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 9. Eigen values as a complex vector
|
|
Console.WriteLine(@"9. Eigen values as a complex vector");
|
|
Console.WriteLine(evd.EigenValues.ToString("N", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 10. Eigen values as the block diagonal matrix
|
|
Console.WriteLine(@"10. Eigen values as the block diagonal matrix");
|
|
Console.WriteLine(evd.D.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 11. Multiply A * V
|
|
var av = matrix * evd.EigenVectors;
|
|
Console.WriteLine(@"11. Multiply A * V");
|
|
Console.WriteLine(av.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 12. Multiply V * D
|
|
var vd = evd.EigenVectors * evd.D;
|
|
Console.WriteLine(@"12. Multiply V * D");
|
|
Console.WriteLine(vd.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 13. Reconstruct non-symmetriv matrix A = V * D * Vinverse
|
|
reconstruct = evd.EigenVectors * evd.D * evd.EigenVectors.Inverse();
|
|
Console.WriteLine(@"13. Reconstruct non-symmetriv matrix A = V * D * Vinverse");
|
|
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
|
|
Console.WriteLine();
|
|
|
|
// 14. Determinant of the matrix
|
|
Console.WriteLine(@"14. Determinant of the matrix");
|
|
Console.WriteLine(evd.Determinant);
|
|
Console.WriteLine();
|
|
|
|
// 15. Rank of the matrix
|
|
Console.WriteLine(@"15. Rank of the matrix");
|
|
Console.WriteLine(evd.Rank);
|
|
Console.WriteLine();
|
|
}
|
|
}
|
|
}
|
|
|