Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

131 lines
5.7 KiB

// <copyright file="QR.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using System.Globalization;
using MathNet.Numerics.LinearAlgebra.Double;
namespace Examples.LinearAlgebra.FactorizationExamples
{
/// <summary>
/// QR factorization example. Any real square matrix A (m x n) may be decomposed as A = QR where Q is an orthogonal matrix (m x m)
/// (its columns are orthogonal unit vectors meaning QTQ = I) and R (m x n) is an upper triangular matrix
/// (also called right triangular matrix).
/// In this example two methods for actually computing the QR decomposition presented: by means of the Gram–Schmidt process and Householder transformations.
/// </summary>
/// <seealso cref="http://reference.wolfram.com/mathematica/ref/QRDecomposition.html"/>
public class QR : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "QR factorization";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Perform the QR factorization by means of the Gram–Schmidt process and Householder transformations";
}
}
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/QR_decomposition">QR decomposition</seealso>
public void Run()
{
// Format matrix output to console
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
formatProvider.TextInfo.ListSeparator = " ";
// Create 3 x 2 matrix
var matrix = DenseMatrix.OfArray(new[,] { { 1.0, 2.0 }, { 3.0, 4.0 }, { 5.0, 6.0 } });
Console.WriteLine(@"Initial 3x2 matrix");
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Perform QR decomposition (Householder transformations)
var qr = matrix.QR();
Console.WriteLine(@"QR decomposition (Householder transformations)");
// 1. Orthogonal Q matrix
Console.WriteLine(@"1. Orthogonal Q matrix");
Console.WriteLine(qr.Q.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 2. Multiply Q matrix by its transpose gives identity matrix
Console.WriteLine(@"2. Multiply Q matrix by its transpose gives identity matrix");
Console.WriteLine(qr.Q.TransposeAndMultiply(qr.Q).ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 3. Upper triangular factor R
Console.WriteLine(@"3. Upper triangular factor R");
Console.WriteLine(qr.R.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 4. Reconstruct initial matrix: A = Q * R
var reconstruct = qr.Q * qr.R;
Console.WriteLine(@"4. Reconstruct initial matrix: A = Q*R");
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Perform QR decomposition (Gram–Schmidt process)
var gramSchmidt = matrix.GramSchmidt();
Console.WriteLine(@"QR decomposition (Gram–Schmidt process)");
// 5. Orthogonal Q matrix
Console.WriteLine(@"5. Orthogonal Q matrix");
Console.WriteLine(gramSchmidt.Q.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 6. Multiply Q matrix by its transpose gives identity matrix
Console.WriteLine(@"6. Multiply Q matrix by its transpose gives identity matrix");
Console.WriteLine((gramSchmidt.Q.Transpose() * gramSchmidt.Q).ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 7. Upper triangular factor R
Console.WriteLine(@"7. Upper triangular factor R");
Console.WriteLine(gramSchmidt.R.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 8. Reconstruct initial matrix: A = Q * R
reconstruct = gramSchmidt.Q * gramSchmidt.R;
Console.WriteLine(@"8. Reconstruct initial matrix: A = Q*R");
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
Console.WriteLine();
}
}
}