Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

134 lines
5.5 KiB

// <copyright file="Correlation.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
//
// Copyright (c) 2009-2010 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
namespace MathNet.Numerics.Statistics
{
using System;
using System.Collections.Generic;
using System.Linq;
/// <summary>
/// A class with correlation measures between two datasets.
/// </summary>
public static class Correlation
{
/// <summary>
/// Computes the Pearson product-moment correlation coefficient.
/// </summary>
/// <param name="dataA">Sample data A.</param>
/// <param name="dataB">Sample data B.</param>
/// <returns>The Pearson product-moment correlation coefficient.</returns>
public static double Pearson(IEnumerable<double> dataA, IEnumerable<double> dataB)
{
int n = 0;
double r = 0.0;
double meanA = 0;
double meanB = 0;
double varA = 0;
double varB = 0;
using (IEnumerator<double> ieA = dataA.GetEnumerator())
using (IEnumerator<double> ieB = dataB.GetEnumerator())
{
while (ieA.MoveNext())
{
if (!ieB.MoveNext())
{
throw new ArgumentOutOfRangeException("dataB", "Datasets dataA and dataB need to have the same length. dataB is shorter.");
}
double currentA = ieA.Current;
double currentB = ieB.Current;
double deltaA = currentA - meanA;
double scaleDeltaA = deltaA / ++n;
double deltaB = currentB - meanB;
double scaleDeltaB = deltaB / n;
meanA += scaleDeltaA;
meanB += scaleDeltaB;
varA += scaleDeltaA * deltaA * (n - 1);
varB += scaleDeltaB * deltaB * (n - 1);
r += ((deltaA * deltaB * (n - 1)) / n);
}
if (ieB.MoveNext())
{
throw new ArgumentOutOfRangeException("dataA", "Datasets dataA and dataB need to have the same length. dataA is shorter.");
}
}
return r / Math.Sqrt(varA * varB);
}
/// <summary>
/// Computes the Spearman Ranked Correlation Coefficient.
/// </summary>
/// <param name="dataA">Sample data series A.</param>
/// <param name="dataB">Sample data series B.</param>
/// <returns>The Spearman Ranked Correlation Coefficient.</returns>
public static double Spearman(IEnumerable<double> dataA, IEnumerable<double> dataB)
{
return Pearson(RankedSeries(dataA.ToList()), RankedSeries(dataB.ToList()));
}
private static IEnumerable<double> RankedSeries(ICollection<double> series)
{
if (series == null || series.Count == 0)
return Enumerable.Empty<double>();
var rankedSamples = series.Select((sample, index) => new { Sample = sample, RankIndex = index }).OrderBy(s => s.Sample).ToList();
var rankedArray = new double[series.Count];
var previousSample = rankedSamples.Select((sampleIndex, index) => new { SampleIndex = sampleIndex, LoopIndex = index }).First();
foreach (var rankedSampleIndex in rankedSamples.Select((sampleIndex, index) => new { SampleIndex = sampleIndex, LoopIndex = index }))
{
var currentSample = rankedSampleIndex;
if (Math.Abs(currentSample.SampleIndex.Sample - previousSample.SampleIndex.Sample) <= 0)
continue;
var rankedValue = (currentSample.LoopIndex + previousSample.LoopIndex - 1) / 2d + 1;
foreach (var index in Enumerable.Range(previousSample.LoopIndex, currentSample.LoopIndex - previousSample.LoopIndex))
rankedArray[rankedSamples[index].RankIndex] = rankedValue;
previousSample = currentSample;
}
var finalValue = (rankedSamples.Count + previousSample.LoopIndex - 1) / 2d + 1;
foreach (var index in Enumerable.Range(previousSample.LoopIndex, rankedSamples.Count - previousSample.LoopIndex))
rankedArray[rankedSamples[index].RankIndex] = finalValue;
return rankedArray;
}
}
}