csharpfftfsharpintegrationinterpolationlinear-algebramathdifferentiationmatrixnumericsrandomregressionstatisticsmathnet
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
5.5 KiB
134 lines
5.5 KiB
// <copyright file="Correlation.cs" company="Math.NET">
|
|
// Math.NET Numerics, part of the Math.NET Project
|
|
// http://numerics.mathdotnet.com
|
|
// http://github.com/mathnet/mathnet-numerics
|
|
// http://mathnetnumerics.codeplex.com
|
|
//
|
|
// Copyright (c) 2009-2010 Math.NET
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person
|
|
// obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without
|
|
// restriction, including without limitation the rights to use,
|
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following
|
|
// conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
// </copyright>
|
|
|
|
namespace MathNet.Numerics.Statistics
|
|
{
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
|
|
/// <summary>
|
|
/// A class with correlation measures between two datasets.
|
|
/// </summary>
|
|
public static class Correlation
|
|
{
|
|
/// <summary>
|
|
/// Computes the Pearson product-moment correlation coefficient.
|
|
/// </summary>
|
|
/// <param name="dataA">Sample data A.</param>
|
|
/// <param name="dataB">Sample data B.</param>
|
|
/// <returns>The Pearson product-moment correlation coefficient.</returns>
|
|
public static double Pearson(IEnumerable<double> dataA, IEnumerable<double> dataB)
|
|
{
|
|
int n = 0;
|
|
double r = 0.0;
|
|
|
|
double meanA = 0;
|
|
double meanB = 0;
|
|
double varA = 0;
|
|
double varB = 0;
|
|
|
|
using (IEnumerator<double> ieA = dataA.GetEnumerator())
|
|
using (IEnumerator<double> ieB = dataB.GetEnumerator())
|
|
{
|
|
while (ieA.MoveNext())
|
|
{
|
|
if (!ieB.MoveNext())
|
|
{
|
|
throw new ArgumentOutOfRangeException("dataB", "Datasets dataA and dataB need to have the same length. dataB is shorter.");
|
|
}
|
|
double currentA = ieA.Current;
|
|
double currentB = ieB.Current;
|
|
|
|
double deltaA = currentA - meanA;
|
|
double scaleDeltaA = deltaA / ++n;
|
|
|
|
double deltaB = currentB - meanB;
|
|
double scaleDeltaB = deltaB / n;
|
|
|
|
meanA += scaleDeltaA;
|
|
meanB += scaleDeltaB;
|
|
|
|
varA += scaleDeltaA * deltaA * (n - 1);
|
|
varB += scaleDeltaB * deltaB * (n - 1);
|
|
r += ((deltaA * deltaB * (n - 1)) / n);
|
|
}
|
|
if (ieB.MoveNext())
|
|
{
|
|
throw new ArgumentOutOfRangeException("dataA", "Datasets dataA and dataB need to have the same length. dataA is shorter.");
|
|
}
|
|
}
|
|
|
|
return r / Math.Sqrt(varA * varB);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Computes the Spearman Ranked Correlation Coefficient.
|
|
/// </summary>
|
|
/// <param name="dataA">Sample data series A.</param>
|
|
/// <param name="dataB">Sample data series B.</param>
|
|
/// <returns>The Spearman Ranked Correlation Coefficient.</returns>
|
|
public static double Spearman(IEnumerable<double> dataA, IEnumerable<double> dataB)
|
|
{
|
|
return Pearson(RankedSeries(dataA.ToList()), RankedSeries(dataB.ToList()));
|
|
}
|
|
|
|
private static IEnumerable<double> RankedSeries(ICollection<double> series)
|
|
{
|
|
if (series == null || series.Count == 0)
|
|
return Enumerable.Empty<double>();
|
|
|
|
var rankedSamples = series.Select((sample, index) => new { Sample = sample, RankIndex = index }).OrderBy(s => s.Sample).ToList();
|
|
|
|
var rankedArray = new double[series.Count];
|
|
|
|
var previousSample = rankedSamples.Select((sampleIndex, index) => new { SampleIndex = sampleIndex, LoopIndex = index }).First();
|
|
foreach (var rankedSampleIndex in rankedSamples.Select((sampleIndex, index) => new { SampleIndex = sampleIndex, LoopIndex = index }))
|
|
{
|
|
var currentSample = rankedSampleIndex;
|
|
|
|
if (Math.Abs(currentSample.SampleIndex.Sample - previousSample.SampleIndex.Sample) <= 0)
|
|
continue;
|
|
|
|
var rankedValue = (currentSample.LoopIndex + previousSample.LoopIndex - 1) / 2d + 1;
|
|
foreach (var index in Enumerable.Range(previousSample.LoopIndex, currentSample.LoopIndex - previousSample.LoopIndex))
|
|
rankedArray[rankedSamples[index].RankIndex] = rankedValue;
|
|
|
|
previousSample = currentSample;
|
|
}
|
|
|
|
var finalValue = (rankedSamples.Count + previousSample.LoopIndex - 1) / 2d + 1;
|
|
foreach (var index in Enumerable.Range(previousSample.LoopIndex, rankedSamples.Count - previousSample.LoopIndex))
|
|
rankedArray[rankedSamples[index].RankIndex] = finalValue;
|
|
|
|
return rankedArray;
|
|
}
|
|
}
|
|
}
|
|
|