Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

134 lines
7.4 KiB

// <copyright file="Statistics.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics;
using MathNet.Numerics.Distributions;
using MathNet.Numerics.Statistics;
namespace Examples
{
/// <summary>
/// Statistics on set of data
/// </summary>
public class Statistics : IExample
{
/// <summary>
/// Gets the name of this example
/// </summary>
public string Name
{
get
{
return "Statistics";
}
}
/// <summary>
/// Gets the description of this example
/// </summary>
public string Description
{
get
{
return "Basic statistics on set of data, correlation";
}
}
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient">Pearson product-moment correlation coefficient</seealso>
public void Run()
{
// 1. Initialize the new instance of the ChiSquare distribution class with parameter dof = 5.
var chiSquare = new ChiSquared(5);
Console.WriteLine(@"1. Initialize the new instance of the ChiSquare distribution class with parameter DegreesOfFreedom = {0}", chiSquare.DegreesOfFreedom);
Console.WriteLine(@"{0} distributuion properties:", chiSquare);
Console.WriteLine(@"{0} - Largest element", chiSquare.Maximum.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Smallest element", chiSquare.Minimum.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Mean", chiSquare.Mean.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Median", chiSquare.Median.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Mode", chiSquare.Mode.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Variance", chiSquare.Variance.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Standard deviation", chiSquare.StdDev.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Skewness", chiSquare.Skewness.ToString(" #0.00000;-#0.00000"));
Console.WriteLine();
// 2. Generate 1000 samples of the ChiSquare(5) distribution
Console.WriteLine(@"2. Generate 1000 samples of the ChiSquare(5) distribution");
var data = new double[1000];
for (var i = 0; i < data.Length; i++)
{
data[i] = chiSquare.Sample();
}
// 3. Get basic statistics on set of generated data using extention methods
Console.WriteLine(@"3. Get basic statistics on set of generated data using extention methods");
Console.WriteLine(@"{0} - Largest element", data.Maximum().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Smallest element", data.Minimum().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Mean", data.Mean().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Median", data.Median().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Biased population variance", data.PopulationVariance().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Variance", data.Variance().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Standard deviation", data.StandardDeviation().ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Biased sample standard deviation", data.PopulationStandardDeviation().ToString(" #0.00000;-#0.00000"));
Console.WriteLine();
// 4. Compute the basic statistics of data set using DescriptiveStatistics class
Console.WriteLine(@"4. Compute the basic statistics of data set using DescriptiveStatistics class");
var descriptiveStatistics = new DescriptiveStatistics(data);
Console.WriteLine(@"{0} - Kurtosis", descriptiveStatistics.Kurtosis.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Largest element", descriptiveStatistics.Maximum.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Smallest element", descriptiveStatistics.Minimum.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Mean", descriptiveStatistics.Mean.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Variance", descriptiveStatistics.Variance.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Standard deviation", descriptiveStatistics.StandardDeviation.ToString(" #0.00000;-#0.00000"));
Console.WriteLine(@"{0} - Skewness", descriptiveStatistics.Skewness.ToString(" #0.00000;-#0.00000"));
Console.WriteLine();
// Generate 1000 samples of the ChiSquare(2.5) distribution
var chiSquareB = new ChiSquared(2);
var dataB = new double[1000];
for (var i = 0; i < data.Length; i++)
{
dataB[i] = chiSquareB.Sample();
}
// 5. Correlation coefficient between 1000 samples of ChiSquare(5) and ChiSquare(2.5)
Console.WriteLine(@"5. Correlation coefficient between 1000 samples of ChiSquare(5) and ChiSquare(2.5) is {0}", Correlation.Pearson(data, dataB).ToString("N04"));
Console.WriteLine(@"6. Ranked correlation coefficient between 1000 samples of ChiSquare(5) and ChiSquare(2.5) is {0}", Correlation.Spearman(data, dataB).ToString("N04"));
Console.WriteLine();
// 6. Correlation coefficient between 1000 samples of f(x) = x * 2 and f(x) = x * x
data = Generate.LinearSpacedMap(1000, 0, 100, x => x * 2);
dataB = Generate.LinearSpacedMap(1000, 0, 100, x => x * x);
Console.WriteLine(@"7. Correlation coefficient between 1000 samples of f(x) = x * 2 and f(x) = x * x is {0}", Correlation.Pearson(data, dataB).ToString("N04"));
Console.WriteLine(@"8. Ranked correlation coefficient between 1000 samples of f(x) = x * 2 and f(x) = x * x is {0}", Correlation.Spearman(data, dataB).ToString("N04"));
Console.WriteLine();
}
}
}