Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

334 lines
13 KiB

// <copyright file="MatrixNormalTests.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2016 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics.Distributions;
using MathNet.Numerics.LinearAlgebra;
using NUnit.Framework;
namespace MathNet.Numerics.UnitTests.DistributionTests.Multivariate
{
/// <summary>
/// Matrix Normal tests.
/// </summary>
[TestFixture, Category("Distributions")]
public class MatrixNormalTests
{
/// <summary>
/// Can create matrix normal.
/// </summary>
/// <param name="n">Matrix rows count.</param>
/// <param name="p">Matrix columns count.</param>
[TestCase(1, 1)]
[TestCase(3, 3)]
[TestCase(10, 10)]
public void CanCreateMatrixNormal(int n, int p)
{
var matrixM = Matrix<double>.Build.Random(n, p, 1);
var matrixV = Matrix<double>.Build.RandomPositiveDefinite(n, 1);
var matrixK = Matrix<double>.Build.RandomPositiveDefinite(p, 1);
var d = new MatrixNormal(matrixM, matrixV, matrixK);
for (var i = 0; i < matrixM.RowCount; i++)
{
for (var j = 0; j < matrixM.ColumnCount; j++)
{
Assert.AreEqual(matrixM[i, j], d.Mean[i, j]);
}
}
for (var i = 0; i < matrixV.RowCount; i++)
{
for (var j = 0; j < matrixV.ColumnCount; j++)
{
Assert.AreEqual(matrixV[i, j], d.RowCovariance[i, j]);
}
}
for (var i = 0; i < matrixK.RowCount; i++)
{
for (var j = 0; j < matrixK.ColumnCount; j++)
{
Assert.AreEqual(matrixK[i, j], d.ColumnCovariance[i, j]);
}
}
}
/// <summary>
/// Fail create <c>MatrixNormal</c> with bad parameters.
/// </summary>
/// <param name="rowsOfM">Mean matrix rows.</param>
/// <param name="columnsOfM">Mean matrix columns.</param>
/// <param name="rowsOfV">Covariance matrix rows.</param>
/// <param name="columnsOfV">Covariance matrix columns.</param>
/// <param name="rowsOfK">Covariance matrix rows (for columns)</param>
/// <param name="columnsOfK">Covariance matrix columns (for columns)</param>
[TestCase(2, 2, 3, 2, 2, 2)]
[TestCase(2, 2, 2, 3, 2, 2)]
[TestCase(2, 2, 2, 2, 3, 2)]
[TestCase(2, 2, 2, 2, 2, 3)]
[TestCase(5, 2, 6, 5, 2, 2)]
[TestCase(5, 2, 5, 6, 2, 2)]
[TestCase(5, 2, 5, 5, 3, 2)]
[TestCase(5, 2, 5, 5, 2, 3)]
public void FailCreateMatrixNormal(int rowsOfM, int columnsOfM, int rowsOfV, int columnsOfV, int rowsOfK, int columnsOfK)
{
var matrixM = Matrix<double>.Build.Random(rowsOfM, columnsOfM, 1);
var matrixV = Matrix<double>.Build.Random(rowsOfV, columnsOfV, 1);
var matrixK = Matrix<double>.Build.Random(rowsOfK, columnsOfK, 1);
Assert.That(() => new MatrixNormal(matrixM, matrixV, matrixK), Throws.ArgumentException);
}
/// <summary>
/// Has random source.
/// </summary>
[Test]
public void HasRandomSource()
{
const int N = 2;
const int P = 3;
var d = new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1));
Assert.IsNotNull(d.RandomSource);
}
/// <summary>
/// Can set random source.
/// </summary>
[Test]
public void CanSetRandomSource()
{
const int N = 2;
const int P = 3;
GC.KeepAlive(new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1))
{
RandomSource = new System.Random(0)
});
}
[Test]
public void HasRandomSourceEvenAfterSetToNull()
{
const int N = 2;
const int P = 3;
var d = new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1));
Assert.DoesNotThrow(() => d.RandomSource = null);
Assert.IsNotNull(d.RandomSource);
}
/// <summary>
/// Validate ToString.
/// </summary>
[Test]
public void ValidateToString()
{
const int N = 2;
const int P = 5;
var d = new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1));
Assert.AreEqual("MatrixNormal(Rows = 2, Columns = 5)", d.ToString());
}
/// <summary>
/// Can get M.
/// </summary>
/// <param name="n">Matrix rows count.</param>
/// <param name="p">Matrix columns count.</param>
[TestCase(1, 1)]
[TestCase(3, 3)]
[TestCase(10, 10)]
public void CanGetM(int n, int p)
{
var matrixM = Matrix<double>.Build.Random(n, p, 1);
var d = new MatrixNormal(matrixM, Matrix<double>.Build.RandomPositiveDefinite(n, 1), Matrix<double>.Build.RandomPositiveDefinite(p, 1));
for (var i = 0; i < matrixM.RowCount; i++)
{
for (var j = 0; j < matrixM.ColumnCount; j++)
{
Assert.AreEqual(matrixM[i, j], d.Mean[i, j]);
}
}
}
/// <summary>
/// Can get V matrix.
/// </summary>
/// <param name="n">Matrix rows count.</param>
/// <param name="p">Matrix columns count.</param>
[TestCase(1, 1)]
[TestCase(3, 3)]
[TestCase(10, 10)]
public void CanGetV(int n, int p)
{
var matrixV = Matrix<double>.Build.RandomPositiveDefinite(n, 1);
var d = new MatrixNormal(Matrix<double>.Build.Random(n, p, 1), matrixV, Matrix<double>.Build.RandomPositiveDefinite(p, 1));
for (var i = 0; i < matrixV.RowCount; i++)
{
for (var j = 0; j < matrixV.ColumnCount; j++)
{
Assert.AreEqual(matrixV[i, j], d.RowCovariance[i, j]);
}
}
}
/// <summary>
/// Can get K matrix.
/// </summary>
/// <param name="n">Matrix rows count.</param>
/// <param name="p">Matrix columns count.</param>
[TestCase(1, 1)]
[TestCase(3, 3)]
[TestCase(10, 10)]
public void CanGetK(int n, int p)
{
var matrixK = Matrix<double>.Build.RandomPositiveDefinite(p, 1);
var d = new MatrixNormal(Matrix<double>.Build.Random(n, p, 1), Matrix<double>.Build.RandomPositiveDefinite(n, 1), matrixK);
for (var i = 0; i < matrixK.RowCount; i++)
{
for (var j = 0; j < matrixK.ColumnCount; j++)
{
Assert.AreEqual(matrixK[i, j], d.ColumnCovariance[i, j]);
}
}
}
/// <summary>
/// Validate density.
/// </summary>
[Test]
public void ValidateDensity()
{
const int Rows = 2;
const int Cols = 2;
var m = Matrix<double>.Build.Dense(Rows, Cols);
m[0, 0] = 0.156065579983862;
m[0, 1] = -0.568039841576594;
m[1, 0] = -0.806288628097313;
m[1, 1] = -1.20004405005077;
var v = Matrix<double>.Build.Dense(Rows, Rows);
v[0, 0] = 0.674457817054746;
v[0, 1] = 0.878930403442185;
v[1, 0] = 0.878930403442185;
v[1, 1] = 1.76277498368061;
var k = Matrix<double>.Build.Dense(Cols, Cols);
k[0, 0] = 0.674457817054746;
k[0, 1] = 0.878930403442185;
k[1, 0] = 0.878930403442185;
k[1, 1] = 1.76277498368061;
var d = new MatrixNormal(m, v, k);
var x = Matrix<double>.Build.Dense(Rows, Cols);
x[0, 0] = 2;
x[0, 1] = 2;
AssertHelpers.AlmostEqualRelative(0.00015682927366491211, d.Density(x), 16);
}
/// <summary>
/// Validate density with non-square matrices.
/// </summary>
[Test]
public void ValidateNonsquareDensity()
{
const int Rows = 2;
const int Cols = 1;
var m = Matrix<double>.Build.Dense(Rows, Cols);
m[0, 0] = 0.156065579983862;
m[1, 0] = -0.806288628097313;
var v = Matrix<double>.Build.Dense(Rows, Rows);
v[0, 0] = 0.674457817054746;
v[0, 1] = 0.878930403442185;
v[1, 0] = 0.878930403442185;
v[1, 1] = 1.76277498368061;
var k = Matrix<double>.Build.Dense(Cols, Cols);
k[0, 0] = 0.674457817054746;
var d = new MatrixNormal(m, v, k);
var x = Matrix<double>.Build.Dense(Rows, Cols);
x[0, 0] = 2;
x[1, 0] = 1.5;
AssertHelpers.AlmostEqualRelative(0.008613384131384546, d.Density(x), 12);
}
/// <summary>
/// Can sample.
/// </summary>
/// <param name="n">Matrix rows count.</param>
/// <param name="p">Matrix columns count.</param>
[TestCase(1, 1)]
[TestCase(3, 3)]
[TestCase(10, 10)]
public void CanSample(int n, int p)
{
var d = new MatrixNormal(Matrix<double>.Build.Random(n, p, 1), Matrix<double>.Build.RandomPositiveDefinite(n, 1), Matrix<double>.Build.RandomPositiveDefinite(p, 1));
d.Sample();
}
/// <summary>
/// Can sample static.
/// </summary>
/// <param name="n">Matrix rows count.</param>
/// <param name="p">Matrix columns count.</param>
[TestCase(1, 1)]
[TestCase(3, 3)]
[TestCase(10, 10)]
public void CanSampleStatic(int n, int p)
{
MatrixNormal.Sample(new System.Random(0), Matrix<double>.Build.Random(n, p, 1), Matrix<double>.Build.RandomPositiveDefinite(n, 1), Matrix<double>.Build.RandomPositiveDefinite(p, 1));
}
/// <summary>
/// Fail sample static with bad parameters.
/// </summary>
/// <param name="rowsOfM">Mean matrix rows.</param>
/// <param name="columnsOfM">Mean matrix columns.</param>
/// <param name="rowsOfV">Covariance matrix rows.</param>
/// <param name="columnsOfV">Covariance matrix columns.</param>
/// <param name="rowsOfK">Covariance matrix rows (for columns)</param>
/// <param name="columnsOfK">Covariance matrix columns (for columns)</param>
[TestCase(2, 2, 3, 2, 2, 2)]
[TestCase(2, 2, 2, 3, 2, 2)]
[TestCase(2, 2, 2, 2, 3, 2)]
[TestCase(2, 2, 2, 2, 2, 3)]
[TestCase(5, 2, 6, 5, 2, 2)]
[TestCase(5, 2, 5, 6, 2, 2)]
[TestCase(5, 2, 5, 5, 3, 2)]
[TestCase(5, 2, 5, 5, 2, 3)]
public void FailSampleStatic(int rowsOfM, int columnsOfM, int rowsOfV, int columnsOfV, int rowsOfK, int columnsOfK)
{
Assert.That(() => MatrixNormal.Sample(new System.Random(0), Matrix<double>.Build.Random(rowsOfM, columnsOfM, 1), Matrix<double>.Build.Random(rowsOfV, columnsOfV, 1), Matrix<double>.Build.Random(rowsOfK, columnsOfK, 1)), Throws.ArgumentException);
}
}
}