csharpfftfsharpintegrationinterpolationlinear-algebramathdifferentiationmatrixnumericsrandomregressionstatisticsmathnet
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
13 KiB
334 lines
13 KiB
// <copyright file="MatrixNormalTests.cs" company="Math.NET">
|
|
// Math.NET Numerics, part of the Math.NET Project
|
|
// http://numerics.mathdotnet.com
|
|
// http://github.com/mathnet/mathnet-numerics
|
|
//
|
|
// Copyright (c) 2009-2016 Math.NET
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person
|
|
// obtaining a copy of this software and associated documentation
|
|
// files (the "Software"), to deal in the Software without
|
|
// restriction, including without limitation the rights to use,
|
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following
|
|
// conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
// </copyright>
|
|
|
|
using System;
|
|
using MathNet.Numerics.Distributions;
|
|
using MathNet.Numerics.LinearAlgebra;
|
|
using NUnit.Framework;
|
|
|
|
namespace MathNet.Numerics.UnitTests.DistributionTests.Multivariate
|
|
{
|
|
/// <summary>
|
|
/// Matrix Normal tests.
|
|
/// </summary>
|
|
[TestFixture, Category("Distributions")]
|
|
public class MatrixNormalTests
|
|
{
|
|
/// <summary>
|
|
/// Can create matrix normal.
|
|
/// </summary>
|
|
/// <param name="n">Matrix rows count.</param>
|
|
/// <param name="p">Matrix columns count.</param>
|
|
[TestCase(1, 1)]
|
|
[TestCase(3, 3)]
|
|
[TestCase(10, 10)]
|
|
public void CanCreateMatrixNormal(int n, int p)
|
|
{
|
|
var matrixM = Matrix<double>.Build.Random(n, p, 1);
|
|
var matrixV = Matrix<double>.Build.RandomPositiveDefinite(n, 1);
|
|
var matrixK = Matrix<double>.Build.RandomPositiveDefinite(p, 1);
|
|
var d = new MatrixNormal(matrixM, matrixV, matrixK);
|
|
|
|
for (var i = 0; i < matrixM.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrixM.ColumnCount; j++)
|
|
{
|
|
Assert.AreEqual(matrixM[i, j], d.Mean[i, j]);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < matrixV.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrixV.ColumnCount; j++)
|
|
{
|
|
Assert.AreEqual(matrixV[i, j], d.RowCovariance[i, j]);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < matrixK.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrixK.ColumnCount; j++)
|
|
{
|
|
Assert.AreEqual(matrixK[i, j], d.ColumnCovariance[i, j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Fail create <c>MatrixNormal</c> with bad parameters.
|
|
/// </summary>
|
|
/// <param name="rowsOfM">Mean matrix rows.</param>
|
|
/// <param name="columnsOfM">Mean matrix columns.</param>
|
|
/// <param name="rowsOfV">Covariance matrix rows.</param>
|
|
/// <param name="columnsOfV">Covariance matrix columns.</param>
|
|
/// <param name="rowsOfK">Covariance matrix rows (for columns)</param>
|
|
/// <param name="columnsOfK">Covariance matrix columns (for columns)</param>
|
|
[TestCase(2, 2, 3, 2, 2, 2)]
|
|
[TestCase(2, 2, 2, 3, 2, 2)]
|
|
[TestCase(2, 2, 2, 2, 3, 2)]
|
|
[TestCase(2, 2, 2, 2, 2, 3)]
|
|
[TestCase(5, 2, 6, 5, 2, 2)]
|
|
[TestCase(5, 2, 5, 6, 2, 2)]
|
|
[TestCase(5, 2, 5, 5, 3, 2)]
|
|
[TestCase(5, 2, 5, 5, 2, 3)]
|
|
public void FailCreateMatrixNormal(int rowsOfM, int columnsOfM, int rowsOfV, int columnsOfV, int rowsOfK, int columnsOfK)
|
|
{
|
|
var matrixM = Matrix<double>.Build.Random(rowsOfM, columnsOfM, 1);
|
|
var matrixV = Matrix<double>.Build.Random(rowsOfV, columnsOfV, 1);
|
|
var matrixK = Matrix<double>.Build.Random(rowsOfK, columnsOfK, 1);
|
|
|
|
Assert.That(() => new MatrixNormal(matrixM, matrixV, matrixK), Throws.ArgumentException);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Has random source.
|
|
/// </summary>
|
|
[Test]
|
|
public void HasRandomSource()
|
|
{
|
|
const int N = 2;
|
|
const int P = 3;
|
|
var d = new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1));
|
|
Assert.IsNotNull(d.RandomSource);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Can set random source.
|
|
/// </summary>
|
|
[Test]
|
|
public void CanSetRandomSource()
|
|
{
|
|
const int N = 2;
|
|
const int P = 3;
|
|
GC.KeepAlive(new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1))
|
|
{
|
|
RandomSource = new System.Random(0)
|
|
});
|
|
}
|
|
|
|
[Test]
|
|
public void HasRandomSourceEvenAfterSetToNull()
|
|
{
|
|
const int N = 2;
|
|
const int P = 3;
|
|
var d = new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1));
|
|
Assert.DoesNotThrow(() => d.RandomSource = null);
|
|
Assert.IsNotNull(d.RandomSource);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Validate ToString.
|
|
/// </summary>
|
|
[Test]
|
|
public void ValidateToString()
|
|
{
|
|
const int N = 2;
|
|
const int P = 5;
|
|
var d = new MatrixNormal(Matrix<double>.Build.Random(N, P, 1), Matrix<double>.Build.RandomPositiveDefinite(N, 1), Matrix<double>.Build.RandomPositiveDefinite(P, 1));
|
|
Assert.AreEqual("MatrixNormal(Rows = 2, Columns = 5)", d.ToString());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Can get M.
|
|
/// </summary>
|
|
/// <param name="n">Matrix rows count.</param>
|
|
/// <param name="p">Matrix columns count.</param>
|
|
[TestCase(1, 1)]
|
|
[TestCase(3, 3)]
|
|
[TestCase(10, 10)]
|
|
public void CanGetM(int n, int p)
|
|
{
|
|
var matrixM = Matrix<double>.Build.Random(n, p, 1);
|
|
var d = new MatrixNormal(matrixM, Matrix<double>.Build.RandomPositiveDefinite(n, 1), Matrix<double>.Build.RandomPositiveDefinite(p, 1));
|
|
for (var i = 0; i < matrixM.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrixM.ColumnCount; j++)
|
|
{
|
|
Assert.AreEqual(matrixM[i, j], d.Mean[i, j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Can get V matrix.
|
|
/// </summary>
|
|
/// <param name="n">Matrix rows count.</param>
|
|
/// <param name="p">Matrix columns count.</param>
|
|
[TestCase(1, 1)]
|
|
[TestCase(3, 3)]
|
|
[TestCase(10, 10)]
|
|
public void CanGetV(int n, int p)
|
|
{
|
|
var matrixV = Matrix<double>.Build.RandomPositiveDefinite(n, 1);
|
|
var d = new MatrixNormal(Matrix<double>.Build.Random(n, p, 1), matrixV, Matrix<double>.Build.RandomPositiveDefinite(p, 1));
|
|
for (var i = 0; i < matrixV.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrixV.ColumnCount; j++)
|
|
{
|
|
Assert.AreEqual(matrixV[i, j], d.RowCovariance[i, j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Can get K matrix.
|
|
/// </summary>
|
|
/// <param name="n">Matrix rows count.</param>
|
|
/// <param name="p">Matrix columns count.</param>
|
|
[TestCase(1, 1)]
|
|
[TestCase(3, 3)]
|
|
[TestCase(10, 10)]
|
|
public void CanGetK(int n, int p)
|
|
{
|
|
var matrixK = Matrix<double>.Build.RandomPositiveDefinite(p, 1);
|
|
var d = new MatrixNormal(Matrix<double>.Build.Random(n, p, 1), Matrix<double>.Build.RandomPositiveDefinite(n, 1), matrixK);
|
|
for (var i = 0; i < matrixK.RowCount; i++)
|
|
{
|
|
for (var j = 0; j < matrixK.ColumnCount; j++)
|
|
{
|
|
Assert.AreEqual(matrixK[i, j], d.ColumnCovariance[i, j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Validate density.
|
|
/// </summary>
|
|
[Test]
|
|
public void ValidateDensity()
|
|
{
|
|
const int Rows = 2;
|
|
const int Cols = 2;
|
|
var m = Matrix<double>.Build.Dense(Rows, Cols);
|
|
m[0, 0] = 0.156065579983862;
|
|
m[0, 1] = -0.568039841576594;
|
|
m[1, 0] = -0.806288628097313;
|
|
m[1, 1] = -1.20004405005077;
|
|
|
|
var v = Matrix<double>.Build.Dense(Rows, Rows);
|
|
v[0, 0] = 0.674457817054746;
|
|
v[0, 1] = 0.878930403442185;
|
|
v[1, 0] = 0.878930403442185;
|
|
v[1, 1] = 1.76277498368061;
|
|
|
|
var k = Matrix<double>.Build.Dense(Cols, Cols);
|
|
k[0, 0] = 0.674457817054746;
|
|
k[0, 1] = 0.878930403442185;
|
|
k[1, 0] = 0.878930403442185;
|
|
k[1, 1] = 1.76277498368061;
|
|
|
|
var d = new MatrixNormal(m, v, k);
|
|
|
|
var x = Matrix<double>.Build.Dense(Rows, Cols);
|
|
x[0, 0] = 2;
|
|
x[0, 1] = 2;
|
|
|
|
AssertHelpers.AlmostEqualRelative(0.00015682927366491211, d.Density(x), 16);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Validate density with non-square matrices.
|
|
/// </summary>
|
|
[Test]
|
|
public void ValidateNonsquareDensity()
|
|
{
|
|
const int Rows = 2;
|
|
const int Cols = 1;
|
|
var m = Matrix<double>.Build.Dense(Rows, Cols);
|
|
m[0, 0] = 0.156065579983862;
|
|
m[1, 0] = -0.806288628097313;
|
|
|
|
var v = Matrix<double>.Build.Dense(Rows, Rows);
|
|
v[0, 0] = 0.674457817054746;
|
|
v[0, 1] = 0.878930403442185;
|
|
v[1, 0] = 0.878930403442185;
|
|
v[1, 1] = 1.76277498368061;
|
|
|
|
var k = Matrix<double>.Build.Dense(Cols, Cols);
|
|
k[0, 0] = 0.674457817054746;
|
|
|
|
var d = new MatrixNormal(m, v, k);
|
|
|
|
var x = Matrix<double>.Build.Dense(Rows, Cols);
|
|
x[0, 0] = 2;
|
|
x[1, 0] = 1.5;
|
|
|
|
AssertHelpers.AlmostEqualRelative(0.008613384131384546, d.Density(x), 12);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Can sample.
|
|
/// </summary>
|
|
/// <param name="n">Matrix rows count.</param>
|
|
/// <param name="p">Matrix columns count.</param>
|
|
[TestCase(1, 1)]
|
|
[TestCase(3, 3)]
|
|
[TestCase(10, 10)]
|
|
public void CanSample(int n, int p)
|
|
{
|
|
var d = new MatrixNormal(Matrix<double>.Build.Random(n, p, 1), Matrix<double>.Build.RandomPositiveDefinite(n, 1), Matrix<double>.Build.RandomPositiveDefinite(p, 1));
|
|
d.Sample();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Can sample static.
|
|
/// </summary>
|
|
/// <param name="n">Matrix rows count.</param>
|
|
/// <param name="p">Matrix columns count.</param>
|
|
[TestCase(1, 1)]
|
|
[TestCase(3, 3)]
|
|
[TestCase(10, 10)]
|
|
public void CanSampleStatic(int n, int p)
|
|
{
|
|
MatrixNormal.Sample(new System.Random(0), Matrix<double>.Build.Random(n, p, 1), Matrix<double>.Build.RandomPositiveDefinite(n, 1), Matrix<double>.Build.RandomPositiveDefinite(p, 1));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Fail sample static with bad parameters.
|
|
/// </summary>
|
|
/// <param name="rowsOfM">Mean matrix rows.</param>
|
|
/// <param name="columnsOfM">Mean matrix columns.</param>
|
|
/// <param name="rowsOfV">Covariance matrix rows.</param>
|
|
/// <param name="columnsOfV">Covariance matrix columns.</param>
|
|
/// <param name="rowsOfK">Covariance matrix rows (for columns)</param>
|
|
/// <param name="columnsOfK">Covariance matrix columns (for columns)</param>
|
|
[TestCase(2, 2, 3, 2, 2, 2)]
|
|
[TestCase(2, 2, 2, 3, 2, 2)]
|
|
[TestCase(2, 2, 2, 2, 3, 2)]
|
|
[TestCase(2, 2, 2, 2, 2, 3)]
|
|
[TestCase(5, 2, 6, 5, 2, 2)]
|
|
[TestCase(5, 2, 5, 6, 2, 2)]
|
|
[TestCase(5, 2, 5, 5, 3, 2)]
|
|
[TestCase(5, 2, 5, 5, 2, 3)]
|
|
public void FailSampleStatic(int rowsOfM, int columnsOfM, int rowsOfV, int columnsOfV, int rowsOfK, int columnsOfK)
|
|
{
|
|
Assert.That(() => MatrixNormal.Sample(new System.Random(0), Matrix<double>.Build.Random(rowsOfM, columnsOfM, 1), Matrix<double>.Build.Random(rowsOfV, columnsOfV, 1), Matrix<double>.Build.Random(rowsOfK, columnsOfK, 1)), Throws.ArgumentException);
|
|
}
|
|
}
|
|
}
|
|
|