Math.NET Numerics
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

300 lines
11 KiB

// <copyright file="SparseMatrixTests.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
// Copyright (c) 2009-2010 Math.NET
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
namespace MathNet.Numerics.UnitTests.LinearAlgebraTests.Single
{
using System;
using System.Collections.Generic;
using LinearAlgebra.Single;
using NUnit.Framework;
/// <summary>
/// Sparse matrix tests.
/// </summary>
public class SparseMatrixTests : MatrixTests
{
/// <summary>
/// Creates a matrix for the given number of rows and columns.
/// </summary>
/// <param name="rows">The number of rows.</param>
/// <param name="columns">The number of columns.</param>
/// <returns>A matrix with the given dimensions.</returns>
protected override Matrix CreateMatrix(int rows, int columns)
{
return new SparseMatrix(rows, columns);
}
/// <summary>
/// Creates a matrix from a 2D array.
/// </summary>
/// <param name="data">The 2D array to create this matrix from.</param>
/// <returns>A matrix with the given values.</returns>
protected override Matrix CreateMatrix(float[,] data)
{
return new SparseMatrix(data);
}
/// <summary>
/// Creates a vector of the given size.
/// </summary>
/// <param name="size">The size of the vector to create.
/// </param>
/// <returns>The new vector. </returns>
protected override Vector CreateVector(int size)
{
return new SparseVector(size);
}
/// <summary>
/// Creates a vector from an array.
/// </summary>
/// <param name="data">The array to create this vector from.</param>
/// <returns>The new vector. </returns>
protected override Vector CreateVector(float[] data)
{
return new SparseVector(data);
}
/// <summary>
/// Can create a matrix form array.
/// </summary>
[Test]
public void CanCreateMatrixFrom1DArray()
{
var testData = new Dictionary<string, Matrix>
{
{ "Singular3x3", new SparseMatrix(3, 3, new float[] { 1, 1, 1, 1, 1, 1, 2, 2, 2 }) },
{ "Square3x3", new SparseMatrix(3, 3, new[] { -1.1f, 0.0f, -4.4f, -2.2f, 1.1f, 5.5f, -3.3f, 2.2f, 6.6f }) },
{ "Square4x4", new SparseMatrix(4, 4, new[] { -1.1f, 0.0f, 1.0f, -4.4f, -2.2f, 1.1f, 2.1f, 5.5f, -3.3f, 2.2f, 6.2f, 6.6f, -4.4f, 3.3f, 4.3f, -7.7f }) },
{ "Tall3x2", new SparseMatrix(3, 2, new[] { -1.1f, 0.0f, -4.4f, -2.2f, 1.1f, 5.5f }) },
{ "Wide2x3", new SparseMatrix(2, 3, new[] { -1.1f, 0.0f, -2.2f, 1.1f, -3.3f, 2.2f }) }
};
foreach (var name in testData.Keys)
{
Assert.AreEqual(TestMatrices[name], testData[name]);
}
}
/// <summary>
/// Matrix from array is a copy.
/// </summary>
[Test]
public void MatrixFrom1DArrayIsCopy()
{
// Sparse Matrix copies values from float[], but no remember reference.
var data = new float[] { 1, 1, 1, 1, 1, 1, 2, 2, 2 };
var matrix = new SparseMatrix(3, 3, data);
matrix[0, 0] = 10.0f;
Assert.AreNotEqual(10.0f, data[0]);
}
/// <summary>
/// Matrix from two-dimensional array is a copy.
/// </summary>
[Test]
public void MatrixFrom2DArrayIsCopy()
{
var matrix = new SparseMatrix(TestData2D["Singular3x3"]);
matrix[0, 0] = 10.0f;
Assert.AreEqual(1.0f, TestData2D["Singular3x3"][0, 0]);
}
/// <summary>
/// Can create a matrix from two-dimensional array.
/// </summary>
/// <param name="name">Matrix name.</param>
[Test]
public void CanCreateMatrixFrom2DArray([Values("Singular3x3", "Singular4x4", "Square3x3", "Square4x4", "Tall3x2", "Wide2x3")] string name)
{
var matrix = new SparseMatrix(TestData2D[name]);
for (var i = 0; i < TestData2D[name].GetLength(0); i++)
{
for (var j = 0; j < TestData2D[name].GetLength(1); j++)
{
Assert.AreEqual(TestData2D[name][i, j], matrix[i, j]);
}
}
}
/// <summary>
/// Can create a matrix with uniform values.
/// </summary>
[Test]
public void CanCreateMatrixWithUniformValues()
{
var matrix = new SparseMatrix(10, 10, 10.0f);
for (var i = 0; i < matrix.RowCount; i++)
{
for (var j = 0; j < matrix.ColumnCount; j++)
{
Assert.AreEqual(matrix[i, j], 10.0f);
}
}
}
/// <summary>
/// Can create an identity matrix.
/// </summary>
[Test]
public void CanCreateIdentity()
{
var matrix = SparseMatrix.Identity(5);
for (var i = 0; i < matrix.RowCount; i++)
{
for (var j = 0; j < matrix.ColumnCount; j++)
{
Assert.AreEqual(i == j ? 1.0f : 0.0f, matrix[i, j]);
}
}
}
/// <summary>
/// Identity with wrong order throws <c>ArgumentOutOfRangeException</c>.
/// </summary>
/// <param name="order">The size of the square matrix</param>
[Test]
public void IdentityWithWrongOrderThrowsArgumentOutOfRangeException([Values(0, -1)] int order)
{
Assert.Throws<ArgumentOutOfRangeException>(() => SparseMatrix.Identity(order));
}
/// <summary>
/// Can create a large sparse matrix
/// </summary>
[Test]
public void CanCreateLargeSparseMatrix()
{
var matrix = new SparseMatrix(500, 1000);
var nonzero = 0;
var rnd = new Random();
for (var i = 0; i < matrix.RowCount; i++)
{
for (var j = 0; j < matrix.ColumnCount; j++)
{
var value = rnd.Next(10) * rnd.Next(10) * rnd.Next(10) * rnd.Next(10) * rnd.Next(10);
if (value != 0)
{
nonzero++;
}
matrix[i, j] = value;
}
}
Assert.AreEqual(matrix.NonZerosCount, nonzero);
}
/// <summary>
/// Test whether order matters when adding sparse matrices.
/// </summary>
[Test]
public void CanAddSparseMatricesBothWays()
{
var m1 = new SparseMatrix(1, 3);
var m2 = new SparseMatrix(new float[,] { { 0, 1, 1 } });
var sum1 = m1 + m2;
var sum2 = m2 + m1;
Assert.IsTrue(sum1.Equals(m2));
Assert.IsTrue(sum1.Equals(sum2));
var sparseResult = new SparseMatrix(1, 3);
sparseResult.Add(m2, sparseResult);
Assert.IsTrue(sparseResult.Equals(sum1));
sparseResult = new SparseMatrix(new float[,] { { 0, 1, 1 } });
sparseResult.Add(m1, sparseResult);
Assert.IsTrue(sparseResult.Equals(sum1));
sparseResult = new SparseMatrix(new float[,] { { 0, 1, 1 } });
m1.Add(sparseResult, sparseResult);
Assert.IsTrue(sparseResult.Equals(sum1));
sparseResult = new SparseMatrix(new float[,] { { 0, 1, 1 } });
sparseResult.Add(sparseResult, sparseResult);
Assert.IsTrue(sparseResult.Equals(2 * sum1));
var denseResult = new DenseMatrix(1, 3);
denseResult.Add(m2, denseResult);
Assert.IsTrue(denseResult.Equals(sum1));
denseResult = new DenseMatrix(new float[,] { { 0, 1, 1 } });
denseResult.Add(m1, denseResult);
Assert.IsTrue(denseResult.Equals(sum1));
var m3 = new DenseMatrix(new float[,] { { 0, 1, 1 } });
var sum3 = m1 + m3;
var sum4 = m3 + m1;
Assert.IsTrue(sum3.Equals(m3));
Assert.IsTrue(sum3.Equals(sum4));
}
/// <summary>
/// Test whether order matters when subtracting sparse matrices.
/// </summary>
[Test]
public void CanSubtractSparseMatricesBothWays()
{
var m1 = new SparseMatrix(1, 3);
var m2 = new SparseMatrix(new float[,] { { 0, 1, 1 } });
var diff1 = m1 - m2;
var diff2 = m2 - m1;
Assert.IsTrue(diff1.Equals(m2.Negate()));
Assert.IsTrue(diff1.Equals(diff2.Negate()));
var sparseResult = new SparseMatrix(1, 3);
sparseResult.Subtract(m2, sparseResult);
Assert.IsTrue(sparseResult.Equals(diff1));
sparseResult = new SparseMatrix(new float[,] { { 0, 1, 1 } });
sparseResult.Subtract(m1, sparseResult);
Assert.IsTrue(sparseResult.Equals(diff2));
sparseResult = new SparseMatrix(new float[,] { { 0, 1, 1 } });
m1.Subtract(sparseResult, sparseResult);
Assert.IsTrue(sparseResult.Equals(diff1));
sparseResult = new SparseMatrix(new float[,] { { 0, 1, 1 } });
sparseResult.Subtract(sparseResult, sparseResult);
Assert.IsTrue(sparseResult.Equals(0 * diff1));
var denseResult = new DenseMatrix(1, 3);
denseResult.Subtract(m2, denseResult);
Assert.IsTrue(denseResult.Equals(diff1));
denseResult = new DenseMatrix(new float[,] { { 0, 1, 1 } });
denseResult.Subtract(m1, denseResult);
Assert.IsTrue(denseResult.Equals(diff2));
var m3 = new DenseMatrix(new float[,] { { 0, 1, 1 } });
var diff3 = m1 - m3;
var diff4 = m3 - m1;
Assert.IsTrue(diff3.Equals(m3.Negate()));
Assert.IsTrue(diff3.Equals(diff4.Negate()));
}
}
}