1 changed files with 0 additions and 968 deletions
@ -1,968 +0,0 @@ |
|||
using System; |
|||
using System.Collections.Generic; |
|||
using System.Linq; |
|||
using System.Numerics; |
|||
using System.Text; |
|||
using MathNet.Numerics; |
|||
|
|||
namespace MathNet.Numerics.LtiSystems |
|||
{ |
|||
/// <summary> Class for LTI discrete transfer functions </summary>
|
|||
public class TransferFunctionDiscrete |
|||
{ |
|||
|
|||
private double[] _num; |
|||
|
|||
private double[] _den; |
|||
|
|||
/// <summary>
|
|||
/// numberator (input dependent) Polynomial coefficients as array
|
|||
/// in order
|
|||
/// => index high ... index low
|
|||
/// => [n], [n-1], +..., [0]
|
|||
/// => 1 + q^-1 + ... + q^-n
|
|||
/// </summary>
|
|||
public double[] num |
|||
{ |
|||
get |
|||
{ |
|||
return _num; |
|||
} |
|||
set |
|||
{ |
|||
_num = cutTrailingZeros(value); |
|||
shiftNumDenIfPossible(); |
|||
} |
|||
} |
|||
|
|||
/// <summary> den (state dependent) Polynomial coefficients as array
|
|||
/// in order
|
|||
/// => index high ... index low
|
|||
/// => [n], [n-1], +..., [0]
|
|||
/// => 1 + q^-1 + ... + q^-n
|
|||
/// </summary>
|
|||
public double[] den |
|||
{ |
|||
get |
|||
{ |
|||
return _den; |
|||
} |
|||
set |
|||
{ |
|||
_den = cutTrailingZeros(value); |
|||
shiftNumDenIfPossible(); |
|||
} |
|||
} |
|||
|
|||
|
|||
|
|||
/// <summary> b (input dependent) Polynomial coefficients as array ( </summary>
|
|||
public double[] b |
|||
{ |
|||
get |
|||
{ |
|||
return _num; |
|||
} |
|||
set |
|||
{ |
|||
_num = cutTrailingZeros(value); |
|||
shiftNumDenIfPossible(); |
|||
} |
|||
} |
|||
|
|||
/// <summary> a (state dependent) Polynomial coefficients as array </summary>
|
|||
public double[] a |
|||
{ |
|||
get |
|||
{ |
|||
return _den; |
|||
} |
|||
set |
|||
{ |
|||
_den = cutTrailingZeros(value); |
|||
shiftNumDenIfPossible(); |
|||
} |
|||
} |
|||
|
|||
/// <summary> Internal FIR States -> updated in every response calculation </summary>
|
|||
public double[] z_FIR { get; set; } |
|||
|
|||
/// <summary> Internal IIR States -> updated in every response calculation </summary>
|
|||
public double[] z_IIR { get; set; } |
|||
|
|||
/// <summary> any name you want to give this transfer function </summary>
|
|||
public string Name { get; set; } |
|||
|
|||
/// <summary> sampling time of discrete transfer function (default = 1) </summary>
|
|||
public double Ts { get; set; } |
|||
|
|||
/// <summary> variable for transfer function so far all tf's are in the q^-1 (or equivalently z^-1) form. Changing this will have NO nfluence besides displaying te TF</summary>
|
|||
public string variable = "q^-1"; |
|||
|
|||
|
|||
|
|||
/// <summary>
|
|||
/// Check if this Transfer Function is stable
|
|||
/// </summary>
|
|||
/// <param name="numTolerance">the tolerance for euclidian distance at which a pole/zero pair is considered to be canceling each other</param>
|
|||
/// <returns>false if system is unsable true if system is stable</returns>
|
|||
public bool IsStable(double numTolerance = 1e-8) |
|||
{ |
|||
|
|||
var p = GetPoles(); |
|||
|
|||
var z = GetZeros(); |
|||
var z_isCompensated = new bool[z.Length]; |
|||
for (int j = 0; j < p.Length; j++) |
|||
{ |
|||
// check if pole would lead to unstable behaviour
|
|||
if (p[j].Magnitude > 1.0) |
|||
{ |
|||
|
|||
// init some values
|
|||
double minDistance = Double.PositiveInfinity; |
|||
int idxMinDistanceZero = -1; |
|||
|
|||
// analyze the distance between each zero and the pole now
|
|||
for (int i = 0; i < z.Length; i++) |
|||
{ |
|||
// check if pole has already been used for compensation
|
|||
if (z_isCompensated[i]) |
|||
continue; |
|||
|
|||
// calculate geometrical distance between each zero and the pole now and store the closest neighbour
|
|||
var dist = (p[j] - z[i]).Magnitude; |
|||
if (dist < minDistance) |
|||
{ |
|||
minDistance = dist; |
|||
idxMinDistanceZero = i; |
|||
} |
|||
} |
|||
|
|||
// if closest neighbour is too far away to compensate the unstable pole
|
|||
if (minDistance >= numTolerance) |
|||
return false; // the system is unsable
|
|||
else |
|||
z_isCompensated[idxMinDistanceZero] = true; // if not: mark the zero as already used for compensation
|
|||
|
|||
} |
|||
|
|||
} |
|||
|
|||
return true; |
|||
|
|||
} |
|||
|
|||
|
|||
|
|||
/// <summary> constructor setting no properties at all </summary>
|
|||
public TransferFunctionDiscrete() |
|||
{ |
|||
this.Ts = 1.0; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
|
|||
/// </summary>
|
|||
public TransferFunctionDiscrete(double b_in, double[] a_in, double Ts_in = 1.0d) |
|||
{ |
|||
if (a_in == null) |
|||
throw new ArgumentNullException("a_in"); |
|||
|
|||
this.a = (double[])a_in.Clone(); |
|||
this.b = new double[1]; |
|||
this.b[0] = b_in; |
|||
this.z_IIR = new double[a_in.Length]; |
|||
this.z_FIR = new double[1]; |
|||
this.Ts = Ts_in; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
|
|||
/// </summary>
|
|||
public TransferFunctionDiscrete(double[] b_in, double a_in, double Ts_in = 1.0d) |
|||
{ |
|||
if (b_in == null) |
|||
throw new ArgumentNullException("b_in"); |
|||
|
|||
this.a = new double[1]; |
|||
this.a[0] = a_in; |
|||
this.b = (double[])b_in.Clone(); |
|||
this.z_IIR = new double[1]; |
|||
this.z_FIR = new double[b_in.Length]; |
|||
this.Ts = Ts_in; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
|
|||
/// </summary>
|
|||
public TransferFunctionDiscrete(double b_in, double a_in, double Ts_in = 1.0d) |
|||
{ |
|||
this.a = new double[1]; |
|||
this.a[0] = a_in; |
|||
this.b = new double[1]; |
|||
this.b[0] = b_in; |
|||
this.z_IIR = new double[1]; |
|||
this.z_FIR = new double[1]; |
|||
this.Ts = Ts_in; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// constructor setting a and b vectors as well as initializing the z_FIR and z_IIR states
|
|||
/// </summary>
|
|||
public TransferFunctionDiscrete(double[] b_in, double[] a_in, double Ts_in = 1.0d) |
|||
{ |
|||
if (b_in == null) |
|||
throw new ArgumentNullException("b_in"); |
|||
|
|||
if (a_in == null) |
|||
throw new ArgumentNullException("a_in"); |
|||
|
|||
this.a = (double[])a_in.Clone(); |
|||
this.b = (double[])b_in.Clone(); |
|||
this.z_IIR = new double[a_in.Length]; |
|||
this.z_FIR = new double[b_in.Length]; |
|||
this.Ts = Ts_in; |
|||
} |
|||
|
|||
|
|||
/// <summary>
|
|||
/// Adds delay to the numerator array (shifting the values by d steps)
|
|||
/// </summary>
|
|||
/// <param name="d">integer value of daly to add to this TF</param>
|
|||
public void AddDelay(int d) |
|||
{ |
|||
double[] b_new = new double[b.Length + d]; |
|||
b.CopyTo(b_new, d); |
|||
b = b_new; |
|||
} |
|||
|
|||
#region Helpers
|
|||
/// <summary>
|
|||
/// if num and den both start at a later step (e.G highest power num = q^-3 and highest power den = q^-4), the whole tf can be shifted by n (3) steps
|
|||
/// </summary>
|
|||
private void shiftNumDenIfPossible() |
|||
{ |
|||
var offset = 0; |
|||
if (_num == null || _den == null) |
|||
return; |
|||
|
|||
var n = Math.Min(_num.Length, _den.Length); |
|||
for (int i = 0; i < n; i++) |
|||
{ |
|||
if (num[i] == 0.0d && _den[i] == 0.0d) |
|||
offset = i + 1; |
|||
else |
|||
break; |
|||
} |
|||
|
|||
if (offset > 0) |
|||
{ |
|||
double[] tmp1 = new double[_num.Length - offset]; |
|||
Array.Copy(_num, offset, tmp1, 0, tmp1.Length); |
|||
double[] tmp2 = new double[_den.Length - offset]; |
|||
Array.Copy(_den, offset, tmp2, 0, tmp2.Length); |
|||
_num = tmp1; |
|||
_den = tmp2; |
|||
} |
|||
} |
|||
|
|||
private double[] cutTrailingZeros(double[] vIn) |
|||
{ |
|||
int lengthNew = vIn.Length; |
|||
|
|||
for (int i = vIn.Length - 1; i >= 0; i--) |
|||
{ |
|||
if (vIn[i] != 0) |
|||
{ |
|||
lengthNew = i + 1; |
|||
break; |
|||
} |
|||
} |
|||
|
|||
var v = new double[lengthNew]; |
|||
Array.Copy(vIn, v, lengthNew); |
|||
|
|||
return v; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// checks and adjusts internal states to a and b arrays
|
|||
/// </summary>
|
|||
private void checkStateSizes() |
|||
{ |
|||
if (this.z_IIR == null) |
|||
this.z_IIR = new double[this.a.Length]; |
|||
|
|||
if (this.z_FIR == null) |
|||
this.z_FIR = new double[this.b.Length]; |
|||
|
|||
if (this.a.Length != this.z_IIR.Length) |
|||
this.z_IIR = new double[this.a.Length]; |
|||
|
|||
if (this.b.Length != this.z_FIR.Length) |
|||
this.z_FIR = new double[this.b.Length]; |
|||
|
|||
if (this.a.Length != this.z_IIR.Length) |
|||
this.z_IIR = new double[this.a.Length]; |
|||
} |
|||
#endregion Helpers
|
|||
|
|||
#region Operators
|
|||
|
|||
/// <summary>
|
|||
/// LTI System theory division of a transfer function object by a scalar
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function</param>
|
|||
/// <param name="k">scalar for divison</param>
|
|||
/// <returns>new transfer function object divided by k</returns>
|
|||
public static TransferFunctionDiscrete operator /(TransferFunctionDiscrete G1, double k) |
|||
{ |
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(G1.b, (A1 * k).ToArray(), G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory division of a scalar by a transfer function object
|
|||
/// </summary>
|
|||
/// <param name="k">scalar value</param>
|
|||
/// <param name="G1">transfer function for division</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator /(double k, TransferFunctionDiscrete G1) |
|||
{ |
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete((A1 * k).ToArray(), G1.b, G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory multiplication of a transfer function object by a scalar
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function</param>
|
|||
/// <param name="k">scalar for multiplication</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator *(TransferFunctionDiscrete G1, double k) |
|||
{ |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete((B1 * k).ToArray(), G1.a, G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
|
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory multiplication of a transfer function object by a scalar
|
|||
/// </summary>
|
|||
/// <param name="k">scalar for multiplication</param>
|
|||
/// <param name="G1">transfer function</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator *(double k, TransferFunctionDiscrete G1) |
|||
{ |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete((B1 * k).ToArray(), G1.a, G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
|
|||
/// <summary>
|
|||
/// LTI System theory substraction of a transfer function with a scalar
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function</param>
|
|||
/// <param name="k">scalar</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator -(TransferFunctionDiscrete G1, double k) |
|||
{ |
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A_res = (A1); |
|||
Polynomial B_res = B1 - (A1 * k); |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory substraction of a scalar by a transfer function
|
|||
/// </summary>
|
|||
/// <param name="k">scalar</param>
|
|||
/// <param name="G1">transfer function</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator -(double k, TransferFunctionDiscrete G1) |
|||
{ |
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A_res = (A1); |
|||
Polynomial B_res = (A1 * k) - B1; |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory addition of a transfer function with a scalar
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function</param>
|
|||
/// <param name="k">scalar</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator +(TransferFunctionDiscrete G1, double k) |
|||
{ |
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A_res = (A1); |
|||
Polynomial B_res = (A1 * k) + B1; |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory addition of a transfer function with a scalar
|
|||
/// </summary>
|
|||
/// <param name="k">transfer function</param>
|
|||
/// <param name="G1">scalar</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator +(double k, TransferFunctionDiscrete G1) |
|||
{ |
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A_res = (A1); |
|||
Polynomial B_res = B1 + (A1 * k); |
|||
|
|||
TransferFunctionDiscrete Gres = new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts) |
|||
{ |
|||
Name = G1.Name |
|||
}; |
|||
return Gres; |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory addition of two transfer functions
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function left</param>
|
|||
/// <param name="G2">transfer function right</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator +(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2) |
|||
{ |
|||
if (Math.Abs(G1.Ts - G2.Ts) > 1e-12) |
|||
throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts)); |
|||
|
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A2 = new Polynomial(G2.a); |
|||
Polynomial B2 = new Polynomial(G2.b); |
|||
|
|||
Polynomial A_res = (A1 * A2); |
|||
Polynomial B_res = (B1 * A2) + (B2 * A1); |
|||
|
|||
return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts); |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory substraction of two transfer functions
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function left</param>
|
|||
/// <param name="G2">transfer function right</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator -(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2) |
|||
{ |
|||
if (Math.Abs(G1.Ts - G2.Ts) > 1e-12) |
|||
throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts)); |
|||
|
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A2 = new Polynomial(G2.a); |
|||
Polynomial B2 = new Polynomial(G2.b); |
|||
|
|||
Polynomial A_res = (A1 * A2); |
|||
Polynomial B_res = (B1 * A2) - (B2 * A1); |
|||
|
|||
return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts); |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory addition of two transfer functions
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function left</param>
|
|||
/// <param name="G2">transfer function right</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator *(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2) |
|||
{ |
|||
if (Math.Abs(G1.Ts - G2.Ts) > 1e-12) |
|||
throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts)); |
|||
|
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A2 = new Polynomial(G2.a); |
|||
Polynomial B2 = new Polynomial(G2.b); |
|||
|
|||
Polynomial A_res = A1 * A2; |
|||
Polynomial B_res = B1 * B2; |
|||
|
|||
return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts); |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// LTI System theory division of two transfer functions
|
|||
/// </summary>
|
|||
/// <param name="G1">transfer function left</param>
|
|||
/// <param name="G2">transfer function right</param>
|
|||
/// <returns>new transfer function object</returns>
|
|||
public static TransferFunctionDiscrete operator /(TransferFunctionDiscrete G1, TransferFunctionDiscrete G2) |
|||
{ |
|||
if (Math.Abs(G1.Ts - G2.Ts) > 1e-12) |
|||
throw new ArgumentException(String.Format("The two supplied transfer functions do not have equal sampling times. G1.Ts = {0} G2.Ts = {1}", G1.Ts, G2.Ts)); |
|||
|
|||
Polynomial A1 = new Polynomial(G1.a); |
|||
Polynomial B1 = new Polynomial(G1.b); |
|||
|
|||
Polynomial A2 = new Polynomial(G2.a); |
|||
Polynomial B2 = new Polynomial(G2.b); |
|||
|
|||
Polynomial A_res = A1 * B2; |
|||
Polynomial B_res = B1 * A2; |
|||
|
|||
return new TransferFunctionDiscrete(B_res.ToArray(), A_res.ToArray(), G1.Ts); |
|||
} |
|||
#endregion
|
|||
|
|||
/// <summary> calculates y_k = G(q^-1) * x_k for a given x_k array </summary>
|
|||
public IEnumerable<double> CalcResponse(IEnumerable<double> x) |
|||
{ |
|||
return this.CalcResponse(x.ToArray()); |
|||
} |
|||
|
|||
/// <summary> calculates y_k = G(q^-1) * x_k for a given x_k array </summary>
|
|||
public double[] CalcResponse(double[] x) |
|||
{ |
|||
// this is basically a two step convolution and could be replaced by a
|
|||
// conv implementation.
|
|||
// however... this code works fine and replacing it would be more work
|
|||
|
|||
double y_now = 0.0d; |
|||
int idx_a = 0; |
|||
int idx_b = 0; |
|||
double[] y = new double[x.Length]; |
|||
|
|||
this.checkStateSizes(); |
|||
|
|||
// Loop all inputs
|
|||
for (int ii_x = 0; ii_x < x.Length; ii_x++) |
|||
{ |
|||
y_now = 0.0d; |
|||
idx_b = 0; |
|||
|
|||
// loop through b-matrix until end of momentary tempx-array
|
|||
for (int ii_b = 0; ii_b <= ii_x && idx_b < b.Length; ii_b++) |
|||
{ |
|||
|
|||
z_FIR[idx_b] = x[ii_x - ii_b]; |
|||
y_now += b[idx_b] * z_FIR[idx_b]; |
|||
idx_b++; |
|||
} |
|||
|
|||
|
|||
// start at second position, since it's the a-matrix
|
|||
idx_a = 1; |
|||
// loop for a-matrix
|
|||
for (int ii_a = 0; ii_a <= (ii_x - 1) && idx_a < a.Length; ii_a++) |
|||
{ |
|||
z_IIR[idx_a] = y[(ii_x - 1) - ii_a]; |
|||
y_now -= a[idx_a] * z_IIR[idx_a]; |
|||
idx_a++; |
|||
} |
|||
// write result
|
|||
y[ii_x] = (y_now / a[0]); |
|||
z_IIR[0] = y[ii_x]; |
|||
} |
|||
return (y); |
|||
} |
|||
|
|||
// Todo: Implement FiltFilt
|
|||
/* |
|||
/// <summary>
|
|||
/// A wrapper for the StaticFilters.FiltFilt method using the internal a and b arrays
|
|||
/// </summary>
|
|||
/// <param name="data">The data to filter</param>
|
|||
/// <param name="zi">initial state coefficients null for aotomatic generation via steady state solution</param>
|
|||
/// <param name="padlen">the number of datapoints to pad at each side use less than 0 for Math.Max(a.Length, b.Length) * 3</param>
|
|||
/// <returns>The filterd data</returns>
|
|||
/// <remarks>
|
|||
/// In order to prevent transients at the end or start of the sequence we have to pad it
|
|||
/// The padding is done by rotating the sequence by 180° at the ends and append it to the data
|
|||
/// </remarks>
|
|||
public double[] FiltFilt(double[] data, double[] zi = null, int padlen = 0) |
|||
{ |
|||
if (this.a == null || this.a.Length == 0) |
|||
throw new Exception("This transfer function has no a array with data"); |
|||
if (this.b == null || this.b.Length == 0) |
|||
throw new Exception("This transfer function has no a array with data"); |
|||
|
|||
return StaticFilters.FiltFilt(data, this.a, this.b, zi, padlen); |
|||
} |
|||
*/ |
|||
|
|||
#region Dynamics
|
|||
|
|||
/// <summary>
|
|||
/// returns the impulse response with nSteps for the tf model
|
|||
/// </summary>
|
|||
/// <param name="nSteps">number of steps for impulse response</param>
|
|||
/// <returns></returns>
|
|||
public double[] Impulse(int nSteps) |
|||
{ |
|||
|
|||
var Inp = new double[nSteps]; |
|||
Inp[0] = 1.0; |
|||
|
|||
var ImpulseResponse = this.CalcResponse(Inp); |
|||
return (ImpulseResponse); |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// returns the impulse response with nSettling * 1.3 steps for the tf model
|
|||
/// </summary>
|
|||
public double[] Impulse() |
|||
{ |
|||
|
|||
var nSteps = Convert.ToInt32((double)CalcSettlingSteps() * 1.3); |
|||
if (nSteps <= 0) |
|||
return null; |
|||
var Inp = new double[nSteps]; |
|||
Inp[0] = 1.0; |
|||
|
|||
var ImpulseResponse = this.CalcResponse(Inp); |
|||
return (ImpulseResponse); |
|||
} |
|||
|
|||
|
|||
public Complex[] Bode(int nPoints = 100) |
|||
{ |
|||
// substituting z = exp(j * omega * Ts)
|
|||
var omega_vec = Generate.LinearSpaced(nPoints, 0, 2 * Math.PI * 1 / Ts); |
|||
|
|||
return Bode(omega_vec); |
|||
} |
|||
|
|||
public Complex[] Bode(int nPoints, out double[] omega_vec) |
|||
{ |
|||
// substituting z = exp(j * omega * Ts)
|
|||
omega_vec = Generate.LinearSpaced(nPoints, 0, 2 * Math.PI * 1 / Ts); |
|||
|
|||
|
|||
return Bode(omega_vec); |
|||
} |
|||
|
|||
public Complex[] Bode(double[] omega_vec) |
|||
{ |
|||
|
|||
var nPoints = omega_vec.Length; |
|||
|
|||
double omega; |
|||
double expVal; |
|||
Complex zVal; |
|||
Complex denVal; |
|||
Complex numVal; |
|||
|
|||
var bodeVal = new Complex[nPoints]; |
|||
|
|||
for (int idx = 0; idx < nPoints; idx++) |
|||
{ |
|||
|
|||
|
|||
omega = omega_vec[idx]; |
|||
|
|||
zVal = new Complex(0.0, 0.0); |
|||
|
|||
denVal = new Complex(0.0, 0.0); |
|||
for (int ii = 0; ii < a.Length; ii++) |
|||
{ |
|||
expVal = ii * omega * Ts; |
|||
zVal = new Complex(0.0, expVal); |
|||
|
|||
denVal += a[ii] * zVal.Exp(); |
|||
} |
|||
|
|||
numVal = new Complex(0.0, 0.0); |
|||
for (int ii = 0; ii < b.Length; ii++) |
|||
{ |
|||
expVal = ii * omega * Ts; |
|||
zVal = new Complex(0.0, expVal); |
|||
|
|||
numVal += b[ii] * zVal.Exp(); |
|||
} |
|||
bodeVal[idx] = numVal / denVal; |
|||
} |
|||
|
|||
return bodeVal; |
|||
} |
|||
|
|||
/// <summary> The poles resulting from the denominator Polynomial root</summary>
|
|||
public Complex[] GetPoles() |
|||
{ |
|||
Polynomial a_poly = new Polynomial(a, isFlip:true); |
|||
Complex[] r = a_poly.GetRoots(); |
|||
return r; |
|||
} |
|||
|
|||
/// <summary> The zeros resulting from the nominator Polynomial root </summary>
|
|||
public Complex[] GetZeros() |
|||
{ |
|||
Polynomial b_poly = new Polynomial(b, isFlip:true); |
|||
Complex[] r = b_poly.GetRoots(); |
|||
return r; |
|||
} |
|||
|
|||
|
|||
/// <summary>
|
|||
/// calculate the number of steps the system will need until it can be assumed to be settled
|
|||
/// </summary>
|
|||
/// <param name="tol">tolerance in decimal percent at which to assume that the system is settled (default = 0.3)</param>
|
|||
/// <param name="n_max">maximum number of steps to simulate (default = 500000)</param>
|
|||
/// <returns>number of steps at which the system is assumed to be settled, or 0 if unstable</returns>
|
|||
public int CalcSettlingSteps(double tol = 0.03, int n_max = 500000) |
|||
{ |
|||
|
|||
// init settling time as zero for never settled
|
|||
int n_sttl = 0; |
|||
|
|||
// if the system is unstable return zero since the system will never be settled
|
|||
if (this.IsStable() == false) |
|||
return 0; |
|||
|
|||
int n_sim = 0; |
|||
|
|||
double[] dampVals = GetDampings(out double[] EigenFrequencys); |
|||
|
|||
double dampWorst = dampVals.Min(); |
|||
|
|||
//for (int ii = 1; ii < dampVals.Length; ii++)
|
|||
// dampWorst = dampWorst * dampVals[ii];
|
|||
|
|||
double t_simFull; |
|||
|
|||
// appromate a settling time based on damping
|
|||
var t_stlDamp = -Math.Log(tol) / dampWorst; |
|||
|
|||
// approximate a settling time from time constants
|
|||
var tau = new double[dampVals.Length]; |
|||
for (int ii = 0; ii < tau.Length; ii++) |
|||
tau[ii] = 1.0 / (dampVals[ii] * EigenFrequencys[ii]); |
|||
|
|||
// approx after 5 * biggest time constant
|
|||
var t_stlTimeConst = tau.Max() * 5; |
|||
|
|||
// choose bigger approximation
|
|||
t_simFull = Math.Max(t_stlTimeConst, t_stlDamp); |
|||
|
|||
// recalculate to number of steps
|
|||
int nStepsBase = (int)Math.Ceiling(t_simFull / Ts); |
|||
|
|||
|
|||
// simulate impulse responses with n*10*nStepsBase time steps
|
|||
// incrementing n if necessary until steady state is reached
|
|||
n_sim = nStepsBase <= 0 ? 5 : nStepsBase; |
|||
int count = 0; |
|||
while (count < 10 && n_sttl == 0) |
|||
{ |
|||
if (n_sim > n_max) |
|||
return n_sttl; |
|||
|
|||
n_sim = 10 * n_sim; |
|||
|
|||
double[] dirac_sim = new double[n_sim]; |
|||
dirac_sim[0] = 1.0; |
|||
var tmp_outp = this.CalcResponse(dirac_sim); |
|||
|
|||
int idxPos = n_sim - 1; |
|||
|
|||
// find first step beeing bigger than tolerance
|
|||
while (idxPos > 0 && n_sttl == 0) |
|||
{ |
|||
if (tmp_outp[idxPos] > tol) |
|||
n_sttl = idxPos; |
|||
|
|||
idxPos--; |
|||
} |
|||
count++; |
|||
} |
|||
return n_sttl; |
|||
|
|||
} |
|||
|
|||
#endregion Dynamics
|
|||
|
|||
|
|||
#region Dampings
|
|||
/// <summary>
|
|||
/// gets the damping coefficients from this transfer function,
|
|||
/// since all transfer functions so far are discrete time,
|
|||
/// these values do not directly translate to lambda.
|
|||
/// the theoretical recalculation is:
|
|||
/// Z = -cos(angle(log(lambda)))
|
|||
/// </summary>
|
|||
/// <returns>Array of damping values for this transfer function</returns>
|
|||
public double[] GetDampings() |
|||
{ |
|||
return GetDampings(out double[] f); |
|||
} |
|||
|
|||
/// <summary>
|
|||
/// gets the damping coefficients from this transfer function,
|
|||
/// since all transfer functions so far are discrete time,
|
|||
/// these values do not directly translate to lambda.
|
|||
/// the theoretical recalculation is:
|
|||
/// Z = -cos(angle(log(lambda)))
|
|||
/// </summary>
|
|||
/// <returns>Array of damping values for this transfer function</returns>
|
|||
public double[] GetDampings(out double[] wn) |
|||
{ |
|||
|
|||
var r = GetPoles().Clone() as Complex[]; |
|||
var s = new Complex[r.Length]; |
|||
var f = new double[r.Length]; |
|||
var z = new double[r.Length]; |
|||
|
|||
for (int idx = 0; idx < r.Length; idx++) |
|||
{ |
|||
s[idx] = Complex.Log(r[idx]) / Ts; |
|||
f[idx] = s[idx].Magnitude; |
|||
z[idx] = -s[idx].Real / f[idx]; |
|||
} |
|||
|
|||
wn = (double[])f.Clone(); |
|||
|
|||
return z; |
|||
|
|||
} |
|||
|
|||
|
|||
#endregion Dampings
|
|||
|
|||
|
|||
#region displaying
|
|||
/// <summary>
|
|||
///
|
|||
/// </summary>
|
|||
/// <returns></returns>
|
|||
public string DispTF() |
|||
{ |
|||
return (DispTF(this.b, this.a, this.Name, this.variable.Substring(0, variable.Length - 1))); |
|||
} |
|||
|
|||
public string NumString() |
|||
{ |
|||
var varStr = this.variable.Substring(0, variable.Length - 1); |
|||
var num = b.Clone() as double[]; |
|||
return getFractString(num, varStr); |
|||
} |
|||
|
|||
public string DenString() |
|||
{ |
|||
var varStr = this.variable.Substring(0, variable.Length - 1); |
|||
var den = a.Clone() as double[]; |
|||
return getFractString(den, varStr); |
|||
} |
|||
|
|||
|
|||
private static string getFractString(double[] num, string varStr) |
|||
{ |
|||
string str1; |
|||
string str2; |
|||
string strNum = ""; |
|||
for (int item = 0; item < num.Length; item++) |
|||
{ |
|||
if (num[item] == 0) |
|||
continue; |
|||
|
|||
//str2 = Math.Abs(num[item]).ToString();
|
|||
str2 = Math.Abs(num[item]).ToString("0.######"); |
|||
if (item == 0) |
|||
{ |
|||
if (num[item] < 0) |
|||
str1 = "-"; |
|||
else |
|||
str1 = ""; |
|||
|
|||
strNum = String.Concat(strNum, str1, str2); |
|||
} |
|||
else |
|||
{ |
|||
if (num[item] > 0) |
|||
str1 = " + "; |
|||
else |
|||
str1 = " - "; |
|||
strNum = String.Concat(strNum, str1, str2, varStr, item.ToString()); |
|||
} |
|||
} |
|||
|
|||
if (strNum.StartsWith("+") || strNum.StartsWith(" ")) |
|||
strNum = strNum.Substring(1); |
|||
|
|||
return strNum; |
|||
} |
|||
|
|||
|
|||
|
|||
/// <summary>
|
|||
///
|
|||
/// </summary>
|
|||
/// <param name="num"></param>
|
|||
/// <param name="den"></param>
|
|||
/// <param name="name"></param>
|
|||
/// <returns></returns>
|
|||
public static string DispTF(double[] num, double[] den, string name, string varStr = " q^-") |
|||
{ |
|||
|
|||
string strNum = getFractString(num, varStr); |
|||
string strDen = getFractString(den, varStr); |
|||
string strHead = ""; |
|||
|
|||
if (String.IsNullOrEmpty(name)) |
|||
strHead = "TF = "; |
|||
else |
|||
strHead = name; |
|||
|
|||
int nbar = Math.Max(strDen.Length, strNum.Length); |
|||
|
|||
string strBar = new String('-', nbar); |
|||
string strOut = String.Concat(strHead, "\n\n", strNum, '\n', strBar, '\n', strDen); |
|||
|
|||
return (strOut); |
|||
} |
|||
|
|||
#endregion displaying
|
|||
|
|||
} |
|||
} |
|||
Loading…
Reference in new issue